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Introduction The model

Discrete time genealogy and Markov chains

We consider a population of individuals with a trait described by
a genealogical tree T in discrete time (fixed or random)
a trait for each individual, whose dynamic is given by (Markovian)
transition kernels, with possible dependence on the number of
offsprings and on the generation (time inhomogeneity).

Limit theorems for large populations. We assume here that the number
of individuals in generation n goes to∞ as n→∞.

Two particular classes studied here : emergence of deterministic
proportions under neutrality assumption or branching property.
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Introduction The model

Motivation 1 : random transmission in cell division

One generation= cell division time. k ∈ {0,1,2}.
Trait = number of parasites, plasmids, mitochondrias, external DNA ... ;
age, growth rate, damages ... of the cell.

Strong asymmetry may be observed.
Two examples of models :

Kimmel’s branching models. (Binomial repartition of plasmids or
parasites in the two daughter cells)
Bifurcating autoregressive process for cellular aging
(Xn+1 = anXn + bn).
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Introduction The model

Motivation 2 : Reproduction-dispersion models

1 generation= 1 year ; Trait=location.

Shape of the repartition of the population with global limitation of
resources on compact set ;
Invasion dynamics and effect of time and space non-homogeneity.

Evolution with time non-homogeneity.
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Introduction The model

Markov chain along binary or Galton-Watson tree (Athreya Khang
98, Guyon 05, Delmas Marsalle and al ...)
Multitype branching processes (well known with finite number of
types ; pioneering works of Moy, Seneta, Vere Jones, Kesten for
infinite number of types).
Branching random walks when P is additive (Biggins), with
possibly random environment (see e.g. works of Comets, Gantert
Müller, Yoshida.)

Here the novelties lie in non branching trees, time non homogeneity
(with non additive P) and/or infinite numbers of types.
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Law of large number for Markov chain along genealogies neutral case

Markov chain along genealogies

The model is specified by P(k)
n (x ,dx1 · · · dxk ) : if u ∈ T belongs to the

generation n and has k offsprings, then

P
(

X (u1) ∈ dx1 · · ·X (uk) ∈ dxk
∣∣ (X (v) : |v | ≤ n)

)
= P(k)

n (X (u),dx1 · · · dxk ).

Question :
What is the proportion of individuals with some given trait, i.e. the
asymptotic behavior of Xn(A)/Xn(X )?
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Law of large number for Markov chain along genealogies neutral case

Early separation of the genealogies

Proposition
Let A ∈ BX . We assume that

(i) Nn →∞ as n→∞ ;
(ii) lim supn→∞ P(|Un ∧ Vn| ≥ K )→ 0 as K →∞, where Un, Vn are

uniformly and independently chosen in generation n ;
(iii) there exists µn(A) such that for all u ∈ T and x ∈ X ,

lim
n→∞

P
(

X (U(u)
n ) ∈ A

∣∣X (u) = x
)
− µn(A) = 0,

where U(u)
n is uniformly chosen in generation n.

Then
Xn(A)
Xn(X )

−µn(A)
n→∞−→ 0 in L2.

Examples for (i-ii) : supercritical branching processes.
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Law of large number for Markov chain along genealogies neutral case

Non late separation of the genealogies

Proposition

Let A ∈ BX . We assume that
(i) Nn →∞ as n→∞ ;
(ii) lim supn→∞ P(|Un ∧ Vn| ≥ n − K )→ 0 as K →∞, where Un, Vn

are uniformly and independently chosen in generation n ;
(iii) there exists µn(A) such that

lim
n→∞

sup
u∈T,x∈X

∣∣P(X (U(u)
n ) ∈ A

∣∣X (u) = x
)
− µn(A)

∣∣ = 0,

where U(u)
n is an individual uniformly chosen in generation n.

Then
Xn(A)
Xn(X )

− µn(A)→ 0 in L2.

Example for (ii) : bounded number of offsprings.
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Law of large number for Markov chain along genealogies neutral case

Two examples where (iii)[ergodic assumptions] can be obtained easily
as the ergodicity of an auxiliary Markov chain.

when the transitions P(k) do not depend on the number of
offsprings ;
when the genealogical tree T is a branching process.

What about branching Markov chains ? (non neutral framework,
multitype branching processes, with possibly infinite number of types).
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Branching Markov chains

The individuals reproduce independently and each individual with trait
x ∈ X in environment e

the reproduction law is N(x ,e)
the traits of the k offsprings are given by

P(k)(x ,e,dx1 . . . dxk ) (k ≥ 1)

the offsprings live in environment Te.
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Branching Markov chains

The auxiliary chain

We consider the transition kernel

Qk (x ,e,dy) = Eδx ,e(Z1(dy))
Eδy ,Te(Zk−1(X ))
Eδx ,e(Zk (X ))

and the trait Xi(u) of the ancestor of u in generation i .

Lemma

For all n ∈ N, x ∈ X and F ∈ B(X n+1) non-negative, we have

Ee,δx

∑
|u|=n

F (X0(u), . . . ,Xn(u))

 = Ee,δx (Zn(X ))Ee,x(F (Y (n)
0 , . . . ,Y (n)

n )),

where (Y (n)
i : i = 0, . . . ,n) is a non-homogeneous Markov chain with

kernels (Qn−i(.,T ie, .) : i = 0, . . . ,n − 1).

In particular Ee,δx

(∑
|u|=n f (Z (u))

)
= Ee,δx (Zn(X ))Ee,x(f (Y

(n)
n )).
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Branching Markov chains

Law of large numbers (I)

Theorem
We assume that there exists a measure ν with finite first moment such
that for all x ∈ X , k , l ≥ 0,

P(N(x ,T ke) ≥ l) ≤ ν[l ,∞).

Assume also that there exists a sequence of probability measure µn
such that

sup
λ∈M1(X )

∣∣Qi,n(λ,T ie, f ◦ fn)− µn(f )
∣∣ −→ 0,

uniformly for n − i →∞. Then,

fn.Zn(f )
Zn(X )

− µn(f )
n→∞−→ 0

Pe a.s. on the event
{
∀n, Zn(X ) > 0; lim inf

n→∞
Zn+1(X )/Zn(X ) > 1

}
.

Vincent Bansaye (Polytechnique) 10 december. Angers. 12 / 17



Branching Markov chains

Law of large numbers (II)

Theorem
Let e ∈ E, x ∈ X and f ∈ B(X ) bounded.
Under some technical assumptions (bounded second moment and control
on (x , k)→ ET k e,δx

(Zn(X ))) and assuming that there exists a sequence
of probability measures µn on X such that

sup
i∈N

∑
n≥i

sup
λ∈M1

∣∣Qi,n(λ,T ie, f ◦ fn)− µn(f )
∣∣2 <∞.

Then, Zn(X )/Ee(Zn(X )) is bounded in L2
e and

fn.Zn(f )− µn(f )Zn(X )
Ee(Zn(X ))

n→∞−→ 0 Pe a.s.
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Branching Markov chains

Applications

Multitype branching process in varying / random environment
Deriving the shape of the population from limit theorems for
Random Walk in Random Environment
A sufficient condition is given by [Doeblin type assumptions]

Ee,δx (Z1(A)) ≤ M(e)Ee,δy (Z1(A)) (x , y ∈ X ).

+control on e→ M(e).
Using Lyapounov assumptions : WIP.
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Branching Markov chains

Two more questions :

How many individuals have some given (non common) trait ?
(local densities and extremal traits)

What is the growth rate of the population ? When does the
population survives ?
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Branching Markov chains

Local densities and extremal individuals

Question : can we get

Zn(An) � Ee(Zn(X ))P(Y (n)
n ∈ An)

from the many-to-one formula

Ee(Zn(An)) = Ee(Zn(X ))P(Y (n)
n ∈ An)

and the trajectory of Y (n) associated to the (large deviation event) An.

Problem : lower bound.

Solution : coupling by a branching process in varying environment in
the first steps and LLN I for the rest of the time.

Application : under monotonicity and neutrality assumption, with a
control of the trajectory of the auxiliary process.
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Branching Markov chains

Let X be the Markov chain with transition inherited from P(k).

Theorem

Assume that X satisfies a LDP with good rate function Ie in
environment e and log m : X × E → (−∞,∞) is continuous and
bounded. Then, for every x ∈ X ,

lim
n→∞

1
n

logEe,δx (Zn(X )) = sup
µ∈M1(X×E)

{∫
X×E

log(m(x ,e))µ(dxde)− Ie(µ)
}

:= %e

and

Me :=

{
µ ∈M1(X × E) :

∫
log(m(x ,e))µ(dxde)− Ie(µ) = %e

}
is compact and non empty.

Applications in fixed environment (via Sanov’s theorem) and stationary
ergodic random environment (via Seppäläinen LDP 95).
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