Stochastic stability of predator-prey model of Holling type(II) with term refuge

S.SLIMANI¹, A. BENCHETTAH¹, P. RAYNAUD DE FITTE²

¹University of Annaba, Algeria, ²LMRS Rouen, France

Stochastic Models in Ecology, Evolution and Genetics, Angers, France, December 9-13, 2013

Introduction

General model describing the dynamic of predator-prey population

$$\begin{cases} \frac{dx}{dt} = xf(x) - g(x, y)y, \\ \frac{dy}{dt} = h(x, y)y. \end{cases}$$

- x(t) the density of prey population;
- y(t) the density of predator population;

- f(x) the per capita net prey growth in absence of predator; h(x, y) the numerical response of predators (measures the growth rate of predators); g(x, y) the functional response of predator.
 - Functional response: function giving the number of prey consumed by a predator per unit time.

Holling type II: describes a situation in which the number of prey consumed per predator initially rises quickly as the density of prey increases but then levels off with further increase in prey density.

FIGURE: Three types of Holling functional response

Deterministic model

In this work we will study the model of M. Alaoui, M.Daher but we treat the case where some preys using the refuge.

M. Aziz-Alaoui, M.Daher Okiye model (2003):

$$\begin{cases} \frac{dx}{dt} = x(t)\left(r_1 - bx(t) - \frac{a_1y(t)}{k_1 + x(t)}\right) \\ \frac{dy}{dt} = y(t)\left(r_2 - \frac{a_2y(t)}{k_2 + x(t)}\right) \end{cases}$$

• Leslie and Gower in [3] and by Pielou in [4]:

$$\frac{dy}{dt} = ry(1 - \frac{y}{\alpha x})$$

 $\frac{y}{\alpha x}$: the loss in the predator population due to the rarity of its favorite food

Leslie et Gower modified model :

$$\frac{dy}{dt} = ry(1 - \frac{y}{\alpha x + c})$$

Position of the problem

We consider the system

(1)
$$\begin{cases} \frac{dx}{dt} = x(t) \left(r_1 - bx(t) - \frac{a_1 y(t)}{k_1 + (x(t) - m)} \right) \\ \frac{dy}{dt} = y(t) \left(r_2 - \frac{a_2 y(t)}{k_2 + (x(t) - m)} \right) \end{cases},$$

with $x(0) \ge 0$ and $y(0) \ge 0$, where x(resp. y): population density of preys (resp. population density of predators),

- r_1 (resp. r_2): growth rate of prey (resp. of predator),
- b the strength of competition among individuals of species x,
- a_1 (resp. a_2): maximum value which per capita reduction rate of preys(resp. of predators),
- k_1 (resp. k_2): environment protection to prey(resp. to predator), and
- m: number of preys using the refuge.

Boundary of the model and existence of positively invariant attractor set

Theorem 1

The set

$$\mathbb{A} = \left\{ (x, y) \in \mathbb{R}_+^2 : m \le x \le \frac{r_1}{b}, 0 \le x + y \le \mathbf{L} \right\},\,$$

where
$$\mathbf{L} = \frac{1}{4a_2b} \left(a_2 r_1 \left(r_1 + 4 \right) + \left(r_2 + 1 \right)^2 \left(r_1 + b k_2 - b m \right) \right).$$
 is positively invariant for solutions of the system (1),

• All solutions of (1) initiating in \mathbb{R}^2_+ are ultimately bounded with respect to \mathbb{R}^2_+ and eventually enter the attracting set A.

Idea of the proof

To prove this theorem we need the following two lemmas.

Lemma 1

Positive quadrant $\mathfrak{Int}(\mathbb{R}^2_+)$ is invariant for system (1).

Lemma 2

Let Φ be an absolutely-continuous function satisfying the differential inequality

$$\frac{d\Phi}{dt} + \alpha_1 \Phi\left(t\right) \leq \alpha_2, \quad t \geq 0, \text{ where } (\alpha_1, \alpha_2) \in \mathbb{R}^2 \text{ avec } \alpha_1 \neq 0.$$

Then

$$\forall 0 \leq \tau \leq t, \quad \Phi\left(t\right) \leq \frac{\alpha_{2}}{\alpha_{1}} - \left(\frac{\alpha_{2}}{\alpha_{1}} - \Phi\left(\tau\right)\right) e^{-\alpha_{1}\left(t - \tau\right)}.$$

Idea of proof

• "A is positively invariant for solutions of system (1)" follows directly from Lemma 1. Indeed, as $(x(0), y(0)) \in A$, x(t) et (y(t)) remain positive.

Idea of proof

- "A is positively invariant for solutions of system (1)" follows directly from Lemma 1. Indeed, as $(x(0), y(0)) \in A$, x(t) et (y(t)) remain positive.
- "A is an attractor set" i.e.

$$\overline{\lim_{t\to +\infty}} x\left(t\right) \leq \frac{r_1}{b_1} \quad \text{et} \quad \overline{\lim_{t\to +\infty}} \left(x\left(t\right) + y\left(t\right)\right) \leq \mathbf{L}.$$

Existence and uniqueness of the positive global solution

The system (1) has three trivial equilibria (extinction of one or both populations)

$$E_0 = (0,0)$$
, $E_1 = \left(0, \frac{-r_2(-k_2+m)}{a_2}\right)$ et $E_2 = \left(\frac{r_1}{b}, 0\right)$.

If we assume that we have

$$\frac{r_{1}\left(k_{1}-m\right)}{a_{1}}>\frac{r_{2}\left(k_{2}-m\right)}{a_{2}},$$

The system (1) has a unique interior equilibrium $E^* = (x^*, y^*)$, where

$$x^* = \frac{1}{2a_2b} \left(a_2r_1 + a_2bm - a_1r_2 - a_2bk_1 + \sqrt{\Delta} \right),$$

 $y^* = \frac{r_2 \left(x^* + k_2 - m \right)}{a_2},$

where

$$\Delta = (a_1 r_2 - a_2 r_1 + a_1 b k_1 - a_2 b m)^2 - 4 a_2 b (a_1 r_2 k_2 - a_1 r_2 m - a_2 r_1 k_1 + a_2 r_1 m).$$

Suppose that $E^* = (x^*, y^*)$ is the equilibrium of the system (1),

$$\begin{cases} r_1 - bx^* - \frac{a_1y^*}{k_1 + (x^*(t) - m)} = 0 \\ r_2 - \frac{a_2y^*}{k_2 + (x^*(t) - m)} = 0 \end{cases}$$

We get the equation of the second degree on x^*

$$a_2bx^{*2} + (a_1r_2 - a_2r_1 + a_1bk_1 - a_2bm)x^* + a_1r_2k_2 - a_1r_2m$$

 $-a_2r_1k_1 + a_2r_1m = 0$

lf

$$\frac{r_{1}\left(k_{1}-m\right)}{a_{1}}>\frac{r_{2}\left(k_{2}-m\right)}{a_{2}}$$

is verified, than the system (1) admits a unique interior equilibrium $E^* = (x^*, y^*)$, given by

$$x^* = \frac{1}{2a_2b} \left(a_2r_1 + a_2bm - a_1r_2 - a_2bk_1 + \sqrt{\Delta} \right),$$
$$y^* = \frac{r_2 \left(x^* - m + k_2 \right)}{a_2}.$$

Global stability

In this section we prove global stability of the system (1) by constructing a suitable Lyapunov function.

Theorem 2

The interior equilibrium $E^* = (x^*, y^*)$ is globally asymptotically stable if

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} A_1 & (k_1 - m) & (k_2) \end{aligned} \end{aligned}$$
 and $egin{aligned} A_1 & (k_1 - m) & (k_2 - m) & (k_3 - m) \end{aligned}$

Idée de la preuve

 The solutions of system (1) are bounded and eventually enter the attractor set A, we can restrict the study to A.

Consider the positive Lyapunov function V defined by

$$\begin{array}{rcl} V\left({x,y} \right) & = & {V_1}\left(x \right) + {V_2}\left(y \right) \text{ t.q.} \\ V_1\left(x \right) & = & {\left({{x^*} + {k_1} - m} \right)\left({x - {x^*} - {x^*}\ln \left({\frac{x}{{{x^*}}}} \right)} \right)} \\ \text{et } V_2\left(y \right) & = & \frac{{{a_1}\left({{x^*} + {k_2} - m} \right)}}{{{a_2}}}\left({y - {y^*} - {y^*}\ln \left({\frac{y}{{{y^*}}}} \right)} \right), \end{array}$$

Idea of proof

$$\frac{dV}{dt} = \left(-b\left(x^* + k_1 - m\right) + \frac{a_1 y}{k_1 + x - m}\right) (x - x^*)^2 + \left(-a_1 + \frac{a_1 y}{k_2 + x - m}\right) (x - x^*) (y - y^*) - a_1 (y - y^*)^2.$$

We can write $\frac{dV}{dt}$ in the following matrix form

$$\frac{dV}{dt} = -\left(x - x^*, y - y^*\right) \underbrace{\left(\begin{array}{cc} -g\left(x, y\right) & -h\left(x, y\right) \\ -h\left(x, y\right) & a_1 \end{array}\right)}_{M} \left(\begin{array}{c} x - x^* \\ y - y^* \end{array}\right),$$

Idea of the proof

With

$$g(x, y) = -b(x^* + k_1 - m) + \frac{a_1 y}{k_1 + x - m}$$

and

$$h(x,y) = \frac{1}{2} \left(-a_1 + \frac{a_1 y}{k_2 + x - m} \right),$$

 $\frac{dV}{dt}$ < 0 \Rightarrow *M* is positive definite.

$$(i) g(x,y) < 0$$

(ii)
$$\Phi(x, y) = -a_1 g(x, y) - h^2(x, y) < 0$$
.

$$\bullet \mathbf{L} < \frac{r_1(k_1-m)}{2a_1} \Rightarrow g(x,y) < 0$$

$$\left\{ \begin{array}{ll} m < k_1 < 2k_2, & m < k_2 \\ et \ 4 \left(r_1 + b(k_1 - m) \right) < a_1 \end{array} \right. \Rightarrow (ii)$$

Stochastic model

We consider the following stochastic system

$$(2) \quad \left\{ \begin{array}{l} dx\left(t\right) = x\left(t\right) \left(r_{1} - bx\left(t\right) - \frac{a_{1}y\left(t\right)}{k_{1} + \left(x\left(t\right) - m\right)}\right) dt + \sigma_{1}\left(x - x^{*}\right) dW_{1}\left(t\right) \\ dy\left(t\right) = y\left(t\right) \left(r_{2} - \frac{a_{2}y\left(t\right)}{k_{2} + \left(x\left(t\right) - m\right)}\right) dt + \sigma_{2}\left(y - y^{*}\right) dW_{2}\left(t\right) \end{array} \right. ,$$

where $W_1(t)$ and $W_2(t)$ are two standard independent Wiener processes defined over the complete probability space (Ω, F, F_t, P)

 σ_1 , σ_2 are real constants.

Existence and uniqueness of the positive global solution

Existence and uniqueness of the positive local solution

Lemma 3

For any initial condition $(x_0, y_0) \in Int\mathbb{R}^2_+$, there is a unique positive local solution (x(t), y(t)) of the system (2) for $t \in [0,\tau_e)$ a.s where τ_e is the explosion time.

Proof

Using the transformation of variables

$$K(t) = \ln(x - x^*)(t)$$
 and $L(t) = \ln(y - y^*)(t)$,

$$\left\{ \begin{array}{l} dK(t) = (1 + \frac{x^*}{e^{K(t)}}) \left(r_1 - b(e^{K(t)} + x^*) - \frac{a_1(e^{L(t)} + y^*)}{k_1 + e^{K(t)} + x^* - m} - \frac{\sigma_1^2}{2} \right) dt + \sigma_1 dW_1\left(t\right), \\ dL(t) = (1 + \frac{y^*}{e^{L(t)}}) \left(r_2 - \frac{a_2 e^{L(t)} + y^*}{k_2 + e^{K(t)} + x^* - m} - \frac{\sigma_2^2}{2} \right) dt + \sigma_2 dW_2\left(t\right), \end{array} \right.$$

$$K(0) = \ln(x(0) - x^*), L(0) = \ln(y(0) - y^*).$$

There exist unique local solution (K(t); L(t)), for $t \in [0.\tau_e)$

where τ_e is the explosion time corresponding to the time when the solution may explode.

Hence $x(t) = e^{K(t)} + x^*$, $y(t) = e^{L(t)} + y^*$ is the unique positive of system (2).

Existence and uniqueness of the positive global solution

Now we will show that this solution is global, i. e, it does not explode in finite which amounts to prove that $\tau_e = \infty$.

Theorem 3

For any initial condition $(x_0, y_0) \in Int\mathbb{R}^2_+$, there exists a unique solution $(x(t), y(t)) \in Int\mathbb{R}^2_+$ for the system (2), for all $\forall t \geq 0$ a.s.

Proof

we can define the stopping time

$$\tau_r = \inf \Big\{ t \in [0, \tau_e) : x \notin (\frac{1}{r}, r) \text{ or } y \notin (\frac{1}{r}, r) \Big\},$$

we have $\tau_{\infty} \leq \tau_{e}$ a.s.

To prove that $\tau_e = \infty$, it is sufficient to prove that $\tau_\infty = \infty$ a.s. let us assume the statement be false.

Let the function $V: Int\mathbb{R}^2_+ \to Int\mathbb{R}_+$ defined by

$$V(x, y) = (x + 1 - \log x) + (y + 1 - \log y).$$

Itô's formula and the positivity of x(t) and y(t) gives us

$$dV(x,y) \le \left[(r_1 + b)x + (a_1 + r_2 + a_2)y + \frac{\sigma_1^2}{2} + \frac{\sigma_2^2}{2} \right] dt + \sigma_1(x - 1)dW_1 + \sigma_2(y - 1)dW_2$$

For $t_1 \leq T$, the integration and expectation gives us $(V(x_0, y_0) + c_5 T) e^{c_5 T} \geq E[1_{\Omega_r}(\omega) V(x(\tau_r, \omega), y(\tau_r, \omega)]$

$$\geq \varepsilon \Big[(r+1-\log r) \wedge (\frac{1}{r}+1+\log r) \Big],$$

where 1_{Ω_r} is the indicator function of Ω_r . Letting $r\to\infty$ we get $\infty>c_6=\infty$ which leads us to a contradiction. So we must have $\tau_\infty=\infty$ a.s.

Asymptotical stability

Theorem 4

The equilibrium of the system (2) is stochastically asymptotically stable if

$$\begin{cases} a_1 < \frac{2Ak_1}{L-m}(2b - x^*\sigma_1^2), \\ \sigma_2^2 < \frac{2r_2}{a_1}, \\ k_2 > L - m. \end{cases}$$

where
$$A = k_1 + x^* - m$$
, $B = k_2 + x^* - m$.

Proof

We consider the positive Lyapunov function *V* defined by

$$\begin{array}{rcl} V\left({x,y} \right) & = & {V_1}\left({x} \right) + {V_2}\left({y} \right) \text{ t.q.} \\ V_1\left({x} \right) & = & {\left({{x^*} + {k_1} - m} \right)\left({x - {x^*} - {x^*}\ln \left({\frac{x}{{{x^*}}}} \right)} \right)} \\ \text{et } V_2\left({y} \right) & = & \frac{{{a_1}\left({{x^*} + {k_2} - m} \right)}}{{{a_2}}}\left({y - {y^*} - {y^*}\ln \left({\frac{y}{{{y^*}}}} \right)} \right), \end{array}$$

Applying the Itô's formula

$$\begin{array}{lcl} \text{dV} & = & \text{dV}_1 + \text{dV}_2 \\ & = & \text{LV} + A\sigma_1(1-\frac{x^*}{x})(x-x^*)\text{dW}_1 + \frac{Ba_1}{a_2}\sigma_2(1-\frac{y^*}{y})(y-y^*)\text{dW}_2, \end{array}$$

where

$$\begin{split} LV &= (-Ab + \frac{ya_1}{k_1 + x - m} + \frac{Ax^*}{2x^2}\sigma_1^2)(x - x^*)^2 + -a_1(x - x^*)(y - y^*) \\ &- a_1(1 - \frac{Ba_1y^*\sigma_2^2}{2a_2y^2})(y - y^*)^2 + \frac{a_1y}{k_2 + x - m}(y - y^*)(x - x^*). \end{split}$$

We have

$$\begin{array}{lcl} \text{LV} & \leq & (-Ab + \frac{a_1(L-m)}{k_1} + \frac{Ax^*\sigma_1^2}{2})(x-x^*)^2 + (x-x^*)(y-y^*)(-a_1 + \frac{a_1}{k_2-m}) \\ & + & a_1(\frac{B\sigma_2^2y^*}{2a_2} - 1)(y-y^*)^2. \end{array}$$

In order that LV < 0, we should have

$$\left\{ \begin{array}{l} a_1 < \frac{2Ak_1}{L-m}(2b-x^*\sigma_1^2), \\ \sigma_2^2 < \frac{2r_2}{a_1}, \\ k_2 > L-m. \end{array} \right. ,$$

References

M.A Aziz-Alaoui, M.Daher Okive.

Boundedness and global stability of a predator-prey model with modified Leslie-Gower and Holling-Type II schemes. Appl. Math. Lett. 16, 1069-1075, 2003.

L. Chen, F. Chen, L. Chen.

Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Analysis: Real World Applications. 11, 246–252, 2010.

P.H. Leslie, J.C. Gower.

The properties of a stochastic model for the predatorprey type of interaction between two species,

Biometrica. 47, 219-234, (1960).

E.C. Pielou.

An Introduction to Mathematical Ecology, Wiley, New York. 1969.

Thank you for your attention