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How neutral diversity (molecular markers) is affected
by selection and adaptation?

Eco-evolutionary framework.

How the ecological phenomena (which only depend on the trait
values) will influence the generation and maintenance of neutral
variation?

How patterns of neutral molecular evolution could be used to
infer the history of trait mutation that have driven past
adaptation?

Abundant literature on the impact of selection on neutral
polymorphism. The models make the assumptions of constant
population and selection.
(Barton, Durrett-Schweinsberg, Etheridge-Pfaffelhüber-Wakolbinger and
references therein).

Our goal is to relax these assumptions.



The individual-based model

Our model:

Asexual population

Individual-based eco-evolutionary process of adaptive trait and
neutral marker dynamics with varying population size (and selection).

Each individual is characterized

by an adaptive trait which influences its intrinsic demographic
rates and the ecological interactions.
The ability of the individual to survive and reproduce depends on
its trait.

by a genetic marker supposed to be selectively neutral.



Trait and Marker Dynamics

The evolution of the trait and marker distribution results from three
basic mechanisms.

Heredity. Transmission of the ancestral trait and marker to the
offsprings.

Mutation. Generates variability in the trait and marker values.

Main assumption: marker mutation process much faster
than trait mutation process but much slower than the
ecological time-scale of birth and death events.

Selection. Acts on the death rates as the result of competition
between individuals - for limited resources ( depends only on the
traits).

Three time scales: ecological birth and death, marker mutation, trait
mutation.



Biological assumptions

(1) large population

(2) rare trait mutations

(3) rare marker mutations

(4) "small" marker mutation steps

(5) marker mutation process much faster than trait mutation
process

and long (evolutive) time scale.

Adaptive Dynamics framework: Successive invasions of successful
trait mutants.



Description of the successive invasions of mutants:

Game Theory - Dynamical Systems:
Hofbauer-Sigmund 1990, Marrow-Law-Cannings 1992,
Metz-Geritz-Meszéna et al. 1992, 1996, Dieckmann-Law 1996.

PDE Approach. Perthame-Barles-Mirrahimi 07-10, Jabin, Desvillettes,
Raoul, Mischler 08-10.

Our Approach: Individual-based model (birth and death process with
mutation and selection).
(Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Fournier-M. 04,
Ferrière-Champagnat-M. 06, Champagnat 06, Champagnat-M. 10)

Our aim: To explain by this adaptive dynamics framework the
underlying dynamics of the neutral markers.

We will prove that if a trait mutant appears and sweeps through the
population to fixation, the marker distribution undergoes a bottleneck
and diffuses after the adaptive jump

Neutral diversity will be restored after each adaptive jump.



Individual-based model

Trait under selection x in a subset X of R (rate of nutrient
intake, body size at maturity, age at maturity . . .).

Neutral marker u in a subset U of R.

The type of an individual i : (xi ,ui ).

K scales the size of the population.

pK scales the mutation probability of the traits under selection.

qK scales the mutation probability of the neutral markers.

Population of NK (t) individuals weighted by 1
K with types

((x1,u1), · · · , (xNK (t),uNK (t))).

It is represented by the point measure νK
t = 1

K

∑NK (t)
i=1 δ(xi ,ui ).

〈νK
t ,g〉 = 1

K

∑NK (t)
i=1 g(xi ,ui ) ; NK (t) = K 〈νK

t ,1〉.



Transitions

BIRTHS:

Each individual with characteristics (x ,u) gives birth to a single
individual at (inhomogeneous) rate b(x) ; 0 ≤ b(x) ≤ b̄ .

At each birth time:

with probability (1− pK ) (1− qK ), the offsprings inherits of (x ,u).

Mutations on trait and marker occur independently with
probability pK and qK .

pK ∼ 1
K 2 ; qK = rK pK ; qK → 0 ; rK → +∞.

Trait mutation: the new trait is x + ` chosen according to
m(x , `)d`.



Marker mutation: the new marker is u + h chosen according to
GK (u,dh).

∃ (A,D(A)) generator of a Feller semi-group such that
∀g ∈ D(A),

lim
K

sup
u

∣∣∣∣ rK

K

∫
(g(u + h)− g(u))GK (u,dh)− A g

∣∣∣∣ = 0.

("Small" marker mutation steps)



DEATHS:

Each individual with characteristics (x ,u) dies at rate

d(x) + η(x)C ∗ νK
t (x) = d(x) +

η(x)

K

NK (t)∑
i=1

C(x − xi ).

The term η(x)C ∗ νK
t (x) = η(x)

K

∑NK (t)
i=1 C(x − xi ) describes the

competition pressure for external resources.

Assumptions:

b(x)− d(x) > 0 ; η(x)C(x − y) ≥ η > 0.

The demographic functions b, d , η, C and the mutation
measures m(., `)d` and GK (.,h)dh are continuous functions.



Examples

Example 1: U = [u1,u2] and GK ∼ N(µK , σ
2
K ) with µK → 0 and

σK → 0 and

lim
K

rKµK

K
= µ ; lim

K

rKσ
2
K

K
= σ 2.

Then Af = µf ′ + σ2

2 f ′′ for f ∈ C2 and f ′(u1) = f ′(u2) = 0.

pK =
1

K 2 ; rK = K 3/2 ; qK =
1√
K

; µK =
µ√
K

; σ2
K =

σ2
√

K

Example 2:
GK is the law of a Pareto variable with index α ∈ (1,2) divided by
K

η
α

such that η < 1, limK
rK

K 1+η = r̄ and

Af = r̄
∫

(f (u + h)− f (u)− hf ′(u)1|h|≤1)
dh
|h|1+α

.



Example 3: Discrete case U = {a,A}.

Marker mutation: the new marker h is chosen according to
GK (u,dh):

GK (u,dh) = 1u=a qa δA(dh) + 1u=A qA δa(dh) ; lim
K

rK

K
= r̄ .

Then

Af (u) = r̄
(

1u=a qa
(
f (A)− f (a)

)
+ 1u=A qA

(
f (a)− f (A)

))
.

pK =
1

K 2 ; rK = r̄ K ; qK =
r̄
K
.



Marker and trait population processes

νK
t =

1
K

NK (t)∑
i=1

δ(xi ,ui ) ∈

{
1
K

n∑
i=1

δ(xi ,ui ) ; n ≥ 0, (x1,u1), · · · , (xn,un) ∈ X × U

}
.

Trait marginal measure (on X ):

X K
t (dx) =

1
K

NK (t)∑
i=1

δxi =

∫
U
νK

t (dx ,du).

Marker distribution (probability on U) for a given trait value x :

πK
t (x ,du) =

∑NK (t)
i=1 1xi=xδui∑NK (t)

i=1 1xi=x

.

We get
νK

t (dx ,du) = X K
t (dx)πK

t (x ,du).

Behavior when K tends to infinity?



Example
Inspired by a model of beak’s size. (Dieckmann-Doebeli 1999)

X = [−2,2] ; U = [−6,6] .

pK = 1
K 2 ; aK = K 3/2 ; qK = 1√

K
.

m ∼ N(0,10−1) and GK ∼ N(0, 1√
K

) are two Gaussian laws
conditioned to [−2,2] and [−6,6].

b(x) = exp(−x2/2σ2
b) ; σb = 0.9. Maximum at 0.

Symmetric competition for resources. η(x) = 1 and

C(x − y) = exp(−(x − y)2/2σ2
C).

Initial condition: K = 1000 ; x0 = −1,u0 = 0.



Simulations: Genealogies of the individuals

We only keep the trajectories of the individuals alive at time t .

(a) σC = 0.8



(b) σC = 0.7

(c) σC = 0.3



Ecological time scale - Invasion fitness function
Monomorphic initial population with fixed trait x .

When K −→∞, no mutation at this scale.

Theorem: Assume that X K
0 (dy) = nK

0 δx (dy) and nK
0 → n0.

Then (NK
t , t ≥ 0) converges to (nt , t ≥ 0), where nt is the solution of

the (deterministic ) logistic equation

ṅt =
(
b(x)− d(x)− η(x)C(0)nt

)
nt ,

which converges when t tends to infinity to the charge capacity

n̂x =
b(x)− d(x)
η(x)C(0)

.

The invasion fitness function is given by

f (y ; x) = b(y)− d(y)− η(x)C(y − x)n̂x .

It represents the growth rate of a sub-population with trait mutant y
in a resident trait-monomorphic population with trait x .



Evolutive time scale: asymptotic behavior of (X K
Kt).

Trait Substitution Sequence: (Metz et al. 1996; Champagnat 06,
Champagnat-Ferrière-M. 08).

Assume νK
0 (dy) = nK

0 δx0 (dy) and that limK→∞ nK
0 = n̂x0 .

Assume "Invasion Implies Fixation".
(If C = 1, x 7→ n̂x is a monotonous function).

Theorem: The population process (X K
Kt , t ≥ 0) converges to a jump

process (n̂Yt δYt ; t ≥ 0) on monomorphic states, called Trait
Substitution Sequence (TSS).

The TSS jumps from n̂x individuals with trait x to n̂x+`
individuals with trait x + ` at rate

b(x) n̂x
[f (x + `; x)]+

b(x + `)
m(x , `)d`.

Each jump corresponds to a successful invasion of a new mutant
trait.



-

6

0

ε

n̂x+`

n̂x

n̂xδx

1
K δx+`

population size

t2
-log K

σ1 tτ1

n̂x+` δx+`



The selection process has sufficient time between two trait
mutations to eliminate disadvantaged traits.

Since the population size is of order K, the duration for this
competition phasis is of order log K.

Succession of phases of trait mutant invasion, and phases of
competition between traits.

Convergence in the sense of finite dimensional distributions and
convergence in law of the sequence of random measures
X K

Kt (dx)dt to the random measure n̂Yt δYt (dx)dt .

Question: what happens for the marker distribution πK
t (x ,dv) ?



Fleming-Viot process (Dawson-Hochberg)

For x ∈ X and u ∈ U , the Fleming-Viot process (F u
t (x ,dv), t ≥ 0) is

a process with values in the probability measures on U ,

started at time 0 with initial condition δu,

associated with the (marker) mutation operator A,

its law is characterized as the unique solution of the following
martingale problem: For any g ∈ D(A),∫
U

g(v) F u
t (x ,dv) = g(u) + b(x)

∫ t

0
〈F u

s (x , .),Ag〉ds + M(x,u)
t (g).

M(x,u)(g) is a continuous square integrable martingale with
quadratic variation

2 b(x)

n̂x

∫ t

0

(
〈F u

s (x , .),g2〉 − 〈F u
s (x , .),g〉2

)
ds.



Substitution Fleming-Viot Process
Theorem: Assume νK

0 (dy ,dv) = nK
0 δ(x0,u0)(dy ,dv) and that

limK→∞ nK
0 = n̂x0 .

Assume that x 7→ n̂x is a monotonous function. (Invasion implies
fixation).

The population process (νK
Kt , t ≥ 0) converges on MF (X × U) to the

process (Vt , t ≥ 0) defined by

Vt (dy ,dv) = n̂Yt δYt (dy) F Ut
t (Yt ,dv).

The process (Yt ,Ut ) started at (x0,u0) jumps from (x ,u) to (x + `, v)
with the jump measure

b(x) n̂x
[f (x + `; x)]+

b(x + `)
F u

t (x ,dv) m(x , `)d`.

The convergence holds in the sense of finite dimensional distributions on
MF (X × U) and in the sense of occupation measures.



Comments

Three qualitative behaviors due to the three scales:

- deterministic equilibrium for the transitory size of the population,

- transitory diffusive behavior for the marker distribution,

- jump process for the trait and marker distribution.

After the jump (at time S), the marker dynamics is the
Fleming-Viot process F v

t (YS,dw) started at δv at time S and
parametrized by YS.

The marker v has been chosen following the probability
F US−

t (YS−,dv).

Every jump creates a bottleneck for the genealogy of the marker.

The distribution of the neutral marker depends on the ecological
processes.



Extension to coexisting traits.

When "Invasion implies fixation" fails, several traits may coexist: the
polymorphism evolution sequence (PES).
( Champagnat-M., PTRF 2011).

Between the jumps of the PES, the marker distribution is the sum of
independent Fleming-Viot processes parametrized by the coexisting
traits.

Thus, when there is a trait diversification, the distribution of the
neutral diversity in one of the subpopulations does not evolve as
completely forgetting the other ones. It depends on the complete trait
distribution.



The model of beak’s size

X = [−1,1] ; U = [−2,2] .

pK = 1
K 2 ; aK = K 3/2 ; qK = 1√

K
.

m ∼ N(0,10−1) and GK ∼ N(0, 1√
K

) are two Gaussian laws
conditioned to [−1,1] and [−2,2].

b(x) = exp(−x2/2σ2
b) ; σb = 0.9. Maximum at 0.

Symmetric competition for resources. η(x) = 1 and

C(x − y) = exp(−(x − y)2/2σ2
C) , σC = 0.8.



Individual-based Simulations

replacement of a resident population by a mutant population.



Coexistence case.



Wright-Fisher Evolutionary process

Discrete marker space U = {A,a}, probabilities qA and qa to mutate
from A to a and from a to A and limK

rK
K = r̄ .

The process (νK
Kt , t ≥ 0) converges to

n̂Yt

(
W a

t δ(Yt ,a)(dy ,du) + (1−W a
t ) δ(Yt ,A)(dy ,du)

)
,

where between jumps,

dW a
t = r̄ b(Yt )

(
qA(1−W a

t )− qaW a
t
)
dt +

√
2b(Yt )

n̂Yt

W a
t

(
1−W a

t

)
dBt .

The limiting process jumps with the TSS (Yt , t ≥ 0).

At jump time t , the process (W a
t ,1−W a

t ) goes to (1,0) with
probability W a

t and to (0,1) with probability 1−W a
t .



A mutant trait appears around time 18290.
At that time, the A-allele frequency is 85%.
After fixation time around 18490, the a-allele population is extinct.
It is regenerated by mutation but gets extinct 3 times before time
19600.



Marker Distribution in a mutant trait population
Let us consider a mutant (y , v) appearing in a monomorphic
population with trait x0 and marker distribution πK (x0,du). Assume
that f (y ; x0) > 0.

Let ε > 0 and consider a sequence (tK ; K ∈ N∗) such that
limK→+∞ tK/ log K = +∞ ; limK→+∞ tK/K = 0. (for example
tK =

√
K log K ).

Then

lim
K→+∞

P
(
〈νK

tK ,1y 〉 > ε
)

=
f (y ; x0)

b(y)
= lim

K→+∞
P
(
πK

tK (y ,du) = δv (du)
)
;

lim
K→+∞

P
(
〈νK

tK ,1y 〉 = 0
)

= 1− f (y ; x0)

b(y)
.

The fixation of the mutant creates a genetical bottleneck.

Idea: The rate of marker mutations can be large: of order KqK ≈
√

K .
But until time sK , log K � sK � (log K )2, the marker mutation
frequency is small and between sK and tK , the mutant markers
remain in negligible proportion.



Marker distribution in a trait-monomorphic population -
time scale Kt

νK
0 (dy ,dv) = nK

0 δ(x0,u0)(dy ,dv) and nK
0 → n̂x0 . Let τK be the time of

first trait mutation.

Proposition

(i) limK→∞
τK

K = τ.

(ii) The process (πK
K (t∧τK )(x0,dv), t ≥ 0) converges in law to the

Fleming-Viot process (F u0
t (x0,dv), t ≥ 0) started at δu0 and

parametrized by x0 and stopped at τ .

Proof:

〈πK
K (t∧τK )(x0, ·), g〉 = g(u0) + HK ,g

K (t∧τK )

+ b(x0) qK (1− pK )
rK

K

∫ t∧τK

0
ds
(

1− 1
K 〈νK

Ks, 1〉+ 1

)
∫
U
πK

Ks(x0, dv)
[ ∫

U

(
g(v + h)− g(v)

)
GK (v , h)dh

]



The process HK ,g is a square integrable martingale.

Computation shows that its quadratic variation behaves as∫ t

0

{
b(x0) + d(x0) + η(0)〈νK

Ks,1〉
〈νK

Ks,1〉
(
〈πK

Ks(x0, .),g2〉 − 〈πK
Ks(x0, .),g〉2

)
,

as K tends to infinity.

Remark: Fundamental to choose 1
K 2 pK

∼ 1 to get a non degenerate
limiting quadratic variation process.


