Inferring the ancestral dynamics of population size from genome wide molecular data - an ABC approach

Simon Boitard

UMR 7205 OSEB (EPHE - MNHN - CNRS), Paris. UMR 1313 GABI (INRA - AgroParisTech), Jouy en Josas

S. Boitard (OSEB - GABI) 1 / 37

 Ω

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Motivation

Genome wide sequence data contains rich information about population size history, cf PSMC (Li and Durbin, 2011).

Pairwise Sequentially Markovian Coalescent (PSMC)

- Markov chain for T2 based on the Sequentially Markovian Coalescent (SMC), transitions depend on $N(t)$.
- Estimation through an Hidden Markov Model (HMM).
- • Limi[t](#page-1-0)[e](#page-6-0)d [t](#page-5-0)o one [i](#page-6-0)ndividual ($n = 2$) \rightarrow \rightarrow \rightarrow not e[ffic](#page-1-0)i[en](#page-3-0)t [fo](#page-2-0)r [re](#page-0-0)[c](#page-5-0)e[nt](#page-0-0) ti[me](#page-0-0)[s.](#page-37-0)

Development of an ABC approach

- Several estimation methods (Drummond et al, 2012; MacLeod et al, 2013; Sheehan et al, 2013), but limited to $n = 2$ or small genomic regions.
- \bullet ABC could take advantage of both genome wide data and large n.
- Little assumptions required concerning the underlying model.

イロト イ母 トイヨ トイヨ トー

Application to farm animal species

- Many genome sequences now available (pig, cattle, sheep, chicken), and a huge amount of animals with dense genotyping data.
- Several bottlenecks expected along their history :
	- Last glaciation : $-25000 60000$ years
	- Domestication : -10 000 years.
	- Creation of modern breeds and intensive selection : -200 years.
- Here 25 unrelated animals ($n = 50$) from the Holstein cattle breed (www.1000bullgenomes.com)

イロメ イ部メ イヨメ イヨメー

Outline

2 [Results](#page-16-0)

- **•** [Simulations](#page-17-0)
- [Application to Holstein data](#page-22-0)

3 [Conclusions and perspectives](#page-28-0)

活

イロト イ部 トイヨ トイヨト

Outline

[Results](#page-16-0)

- **[Simulations](#page-17-0)**
- [Application to Holstein data](#page-22-0)

活

メロメ メ都 メメ きょくきょ

Principles of ABC (Approximate Bayesian Computation)

- \bullet To estimate the parameters θ of a model from a dataset \mathcal{D} , we approximate the posterior probability $\mathbb{P}(\theta|\mathcal{D})$ by the quantity $\mathbb{P}(\theta|\mathcal{S})$, for a set S of (meaningfull!) summary statistics.
- We estimate $\mathbb{P}(\theta|\mathcal{S})$ by simulations, with the following procedure :
	- **1** Compute $S = f(D)$
	- 2 For i from 1 to I:
		- **1** Sample parameter θ_i from the prior distribution of θ .
		- **2** Simulate dataset \mathcal{D}_i from the model with parameter θ_i .
		- **3** Compute $S_i = f(\mathcal{D}_i)$.
		- **4** Select the simulation if $dist(S_i, S) < \epsilon$.
	- **3** Estimate the posterior distribution of θ from the selected θ_i values, by simple counting or other approaches (regression).

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 글 │ K) Q Q Q

[Methods](#page-8-0)

Model

- Coalescent with mutation and recombinaison, $n = 50$ haplotypes.
- No structure.
- Piecewise constant effective population size.

э

[Methods](#page-9-0)

Intervals are defined from a previous PSMC analysis ...

 Ω

э

... as well as breeding history

目

Prior distributions

- Per generation per bp mutation rate : $\mu = 2.5e 8$.
- Per generation per bp recombination rate : $r \sim \mathcal{U}(0.2e 8, 1e 8)$.
- Population size :
	- \bullet log(N_0) ∼ $U(1, 5)$.
	- $\log(N_{i+1}) = \log(N_i) + \alpha$, $\alpha \sim \mathcal{U}(-1, 1)$.
	- 1 $<$ log(N_i) $<$ 5.

イロン イ部ン イ君ン イ君ン 一番

[Methods](#page-12-0)

Summary statistics - Allele Frequency Spectrum (AFS)

- **•** Frequency of polymorphic sites over the genome.
- \bullet Frequency of sites with *i* copies of the minor allele, for *i* from 1 to $n/2$.

• Variance of these frequencies over the geno[m](#page-11-0)e[.](#page-13-0)

Summary statistics - Linkage Disequilibrium (LD)

Correlation between allelic data at two polymorphic sites.

 QQ

イロト イ母 トイヨ トイヨ トー

Summary statistics - Linkage Disequilibrium (LD)

Correlation between allelic data at two polymorphic sites.

- Mean and variance of LD for several distances between sites.
- LD at distance *d* related to population size at time $t = \frac{1}{2\epsilon}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$ $\frac{1}{2c(d)}$.

Implementation

- Simulations :
	- Haplotype data simulated with ms. One sample $=$ 50 independent 2MB segments.
	- 500 000 simulated samples, \approx 40h on a cluster with 500 jobs in parallel (4 min per sample on average).
- Holstein data :
	- Several pre-processing steps required to obtain haplotype data (sequencing, alignment, genotype calling, haplotype estimation).
	- Haplotype data processed with the same Python program.
- **•** Final statistical analysis with the R package abc.

イロメ イ部メ イ君メ イ君メー

Outline

2 [Results](#page-16-0)

- **•** [Simulations](#page-17-0)
- [Application to Holstein data](#page-22-0)

活

イロト イ部 トイヨ トイヨト

Outline

2 [Results](#page-16-0)

• [Simulations](#page-17-0)

[Application to Holstein data](#page-22-0)

活

イロト イ部 トイヨ トイヨト

[Results](#page-18-0) [Simulations](#page-18-0)

Cross validation

Estimation error $\frac{\sum_i (\theta_i - \hat{\theta}_i)^2}{\int k \sqrt{2r(\theta_i)}}$ $I*Var(\theta_i)$ based on 100 CV re[plic](#page-17-0)[at](#page-19-0)[e](#page-17-0)[s.](#page-18-0)

S. Boitard (OSEB - GABI) 18 / 37

 QQQ

E

Influence of AFS and LD statistics - Cross Validation

4 日下

→ 母 \sim \mathcal{A} . э. \sim \rightarrow

 \Rightarrow Þ

Influence of AFS and LD statistics - Cross Validation

4 0 8

 $\left\{ \left\{ \left. \left| \left. \left| \left. \left| \left| \left| \right| \right| \right| \right| \right| \right\} \right| \right\} \left\{ \left. \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right\} \right| \right\} \right\}$

一本 重 下

Þ

Influence of AFS and LD statistics - PLS regression

Comp 1

4 D F

Þ

 \rightarrow \equiv \rightarrow

э \rightarrow

Outline

2 [Results](#page-16-0)

- **[Simulations](#page-17-0)**
- [Application to Holstein data](#page-22-0)

活

イロト イ部 トイヨ トイヨト

Prior check

PC₁

E

イロト イ部 トイヨ トイヨト

Estimated dynamics

S. Boitard (OSEB - GABI) 24 / 37

 299

活

Data is informative

Þ

イロト イ押ト イヨト イヨト

Comparison with PSMC

 299

目

Comparison with PSMC

目

Outline

[Results](#page-16-0)

- **[Simulations](#page-17-0)**
- [Application to Holstein data](#page-22-0)

3 [Conclusions and perspectives](#page-28-0)

活

メロメ メ都 メメ きょくきょ

Conclusions

- The approach seems to work (low cross validation errors, sensible credible intervals).
- Combining AFS and LD is useful.
- Variance of AFS is useful, but variance of LD is not.
- Estimated demography is quite consistent with PSMC, but credible intervals are rather large.
- **Estimation of recent population size seems too large (** > 1000 **).** Influence of sequencing errors (MacLeod et al, 2013)?

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶ ...

Perspectives

- Objective definition of time intervals.
- ABC with more segments $(L = 100)$?
- ABC based on more replicates? Second more local step?
- **•** Estimation with PLS?

画

イロメ イ部メ イヨメ イヨメー

Acknowledgements

- Stanislas Sochacki (Ecole Polytechnique).
- Lounes Chikhi (University Toulouse III), Willy Rodriguez, Olivier Mazet, Simona Grusea (INSA Toulouse).
- Bertrand Servin (INRA, Toulouse).
- 1000 bull genomes project.

メロメ メ御 メメ きょくきょ

Credible Intervals

Proportion in Cl 80 $\frac{1}{I}\sum_i 1(\hat{q}_{10}(\theta_i) <= \theta_i <= \hat{q}_{90}(\theta_i))_{\frac{1}{C}}$ $\frac{1}{I}\sum_i 1(\hat{q}_{10}(\theta_i) <= \theta_i <= \hat{q}_{90}(\theta_i))_{\frac{1}{C}}$

S. Boitard (OSEB - GABI) 32 / 37

Þ

Summary statistics

- Proportion of SNPs : $f = \mathbb{P}(x > 0)$, x number of copies of the minor allele.
- Allele frequency spectrum (AFS) : $\mathbb{P}(x = i | x > 0)$ for i from 1 to 25.
- Variance of AFS : $std(d_i) * f$ for i from 1 to 25, d_i distance between two consecutive sites with i copies of the minor allele.
- Linkage disequilibrium (LD) : $\mathbb{E}[r^2(d)]$ and $std[r^2(d)]$, $r^2(d)$ LD between SNPs at distance d.
- \bullet $d=1$ kb, 4kb, ... 2Mb, corresponding to time intervals in the model. Ex : $d=1$ kb $\rightarrow c=10^{-5}$ M $\rightarrow t=\frac{1}{2c}=50000$.

イロト イ母 トイミト イミト ニヨー りんぴ

Number of segments

- For each position i, S_i i.i.d with $\mathbb{E}[S_i | \theta]$, $Var(S_i | \theta)$.
- Our statistics are averages, i.e. $S_L = \frac{1}{L}$ $\frac{1}{L} \sum_{i=1}^{L} S_i$ $\rightarrow \mathbb{E}[S_L | \theta] = \mathbb{E}[S_i | \theta], \text{ Var}(S_L | \theta) = \frac{1}{L} \text{Var}(S_i | \theta)$
- $Var(S_{\text{genome}} | \theta) = \frac{1}{3*10^9} Var(S_i | \theta)$
- $Var(S_{50*2Mb} | \theta) = \frac{1}{5}Var(S_{10*2Mb} | \theta)$
- When does this variance become too large?

K ロ ▶ K 優 ▶ K 결 ▶ K 결 ▶ ○ 결

Number of segments

 $Var(S_L | \theta)$ must remain small compared to $Var_{\theta}(\mathbb{E}[S_L | \theta])$

- Computation of $Var(S_L | \theta) / Var_{\theta}(\mathbb{E}[S_L | \theta])$ for 1000 θ_i values sampled from the prior distribution.
- For each θ_i , 50 replicates of S_L .

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

Number of segments

Distribution of $Var(S_L | \theta) / Var_{\theta}(\mathbb{E}[S_L | \theta])$

造

イロメ イ部メ イヨメ イヨメー

Prior check

重

メロメ メ都 メイ君 メメ君 メー