Some thoughts and challenges about minimum viable populations and extinction

Sylvain Billiard GEPV UMR CNRS 8198 Université Lille 1. Angers, SMEEG 2013.

Minimum Viable Population: A major question in fundamental and applied ecology

- Why and how often populations and species go extinct?
- Which species are in danger, degree of danger (IUCN Red List, etc.)?
- Arbitrage of resources sharing for the conservation of biodiversity
- Management guides for ecological engineering

Madsen et al. 1999

- Environmental (stochastic) change
- Demographic stochasticity
- Genetic stochasticity

Habitat loss and extinction

Bonelli et al. 2011

Inbreeding depression and extinction: the Habsburg dynasty

Ceballos and Alvarez 2013

Inbreeding depression and extinction: the Habsburg dynasty

Ceballos and Alvarez 2013

Fixation of deleterious mutations and extinction

But only in very small populations? (Lynch 1995, Coron et al. 2013)

Most species are not driven to extinction before genetic factors impact them

Derek Spielman*[†], Barry W. Brook[‡], and Richard Frankham*[§]¶ PNAS | October 19, 2004 | vol. 101 | no. 42 | 15261–15264

Fig. 1. Distribution of percentage differences in heterozygosity (*H*) between threatened (T) and taxonomically related nonthreatened taxa (NT). π is the proportion of taxa for which T < NT, indicated by the shaded bars.

A school of red herring: reply to Frankham et al.

lan G. Jamieson¹ and Fred W. Allendorf²

We believe that

TRFF 2013

Frankham *et al.* place excessive weight on inbreeding depression in very large populations and the potential risk of extinction associated with reduced selection response in future environments.

Correlation between reproductive rate and population size, cause or consequence?

The rules of the dozens/hundreds: demographic stochasticity

N(t+1) = F(N(t)),

Gabriel and Bürger (1992)

The rules of the dozens/hundreds: genetic stochasticity (Franklin 1989)

Ne >50-500

Ne = effective population size = inverse of the coalescent rate

 Ne > 50 to avoid extinction because of deleterious mutations in the short-term (rule-of-thumb from empirical knowledge of animal breeders)

• Ne > 500 to allow for fast enough adaptation in changing environment

(from classical population genetics and quantitative genetics, estimated for a neutral trait and the number of bristle in *Drosophila*)

The rules of the dozens/hundreds : Ne vs. Nc

Rule of the Nc >500-5000?

Synthesis and questions

- A fundamental problem where stochastic models are necessary
- Reliability of the 10-100 and 50-500 rules?
- What about the interaction between Ne and Nc?
- Can we get rid of the (sterile) controversy?
- Which tool for ecological engineering?

First example: viability of self-incompatible plants populations and the importance of **Nc** (with V.C. Tran)

Continuous time

Sexual reproduction, mendelian segregation, self-incompatibility

$$\begin{aligned} r_{uv} &= r \left[\frac{1}{2} \sum_{u'} \left(N_{uu'} p_{uu'}^{vv} + N_{vv} p_{vv}^{uu'} \right) + \frac{1}{2} \sum_{v'} \left(N_{uu} p_{uu}^{vv'} + N_{vv'} p_{vv'}^{uu} \right) \right. \\ &+ \frac{1}{4} \left. \sum_{u' \neq u} \sum_{v' \neq v} \left(N_{uu'} p_{uu'}^{vv'} + N_{vv'} p_{vv'}^{uu'} \right) \right], \quad u \neq v \end{aligned}$$

$$r_{uu} = r \left[\frac{1}{2} \sum_{u'} N_{uu'} p_{uu'}^{uu'} + \frac{1}{2} \sum_{v'} N_{uu} p_{uu'}^{uv'} + \frac{1}{4} \sum_{u' \neq u} \sum_{v' \neq u} N_{uu'} p_{uu'}^{uv'} \right]$$

$$N_{uv}^{t} = N_{uv}^{0} + \int_{0}^{t} \left(r_{uv}(Z_s) - qN_{uv}^{s} \right) ds + M_{uv}^{t}$$

(Billiard et Tran. 2012)

Most simple case: distyly

Probability of extinction

$$\left(\frac{q}{r}\right)^{i+j} \leq \xi_{i,j} \leq \left(\frac{q}{r}\right)^i + \left(\frac{q}{r}\right)^j - \left(\frac{q}{r}\right)^{i+j}$$

(Billiard et Tran. 2012)

Second example: viability of population with deleterious mutations and the importance of **Ne** (with D. Abu Awad)

- Initially mutation-free individuals
- K = 10000 (Large populations)
- 1000 replicas
- Simulations stopped at equilibrium (mutation-selection balance or extinction)

Extinction probability (before a reasonable number of generations)

Synthesis and challenges

- 10-100 and 50-500 rules do not work here... interaction between Nc, Ne and reproductive rate
 - \rightarrow Reconciling Ne and demographic models
- Time to get rid of the demography vs. environment vs. genetics controversy?

 \rightarrow A better question: what is the viability of a population for a given demographic, environmental et genetics state ?

Difficult to have predictions with both genetics and demography

 \rightarrow A general framework is needed (e.g. PVA)

- Difficult to have predictions with both genetics and demography
 - \rightarrow A general framework is needed (e.g. PVA)
- But what depth for the microscopic modelling?
- e.g. Competition for resources:
 - interaction between *n* individuals by pairs
 - equal sharing between *n* individuals
 - a single individual among *n* gets all the resources?