Stochastic models for tumors submitted to a radiotherapy treatment

P. Vallois Institut Élie Cartan de Lorraine, Université de Lorraine

Team projet BIGS, INRIA

avec T. Bastogne (CRAN)

Angers, 09 dec 2013

 Ω

The South The

A T

1. INTRODUCTION

- ¹ Associated collaborators S. Pinel, M. Barberi-Heyob and T. Bastogne (CRAN).
- 2 The aim : a simple stochastic model.
- ³ The ionizations induced by radiation (radiotherapy) cause a variety of possible lesions in the cells and more specifically to DNA.
- ⁴ A bi-scale model which is a generalization of the target theory.

 Ω

A . . 3 . . 3 .

Assumptions

- \bullet Time is discrete, one period = one day.
- ² Each cell has *m* targets. Death occurs when all the targets are inactive.
- ³ Each target may be made inactive after the application of a fraction dose u_0 of radiation, with probability q .

$$
\bigcirc \xrightarrow{q} \otimes \qquad \bigcirc \xrightarrow{1-q} \bigcirc
$$

 $\otimes \stackrel{\mathsf{1}}{\longrightarrow} \otimes$

Moreover we have the LQ relation

$$
q = \left(1 - \exp\{-\alpha u_0 - \beta u_0^2\}\right)^{1/m}.
$$

 Ω

イロト イ押 トイラト イラト

4 Between two consecutive dose fractions if the cell is still alive then an inactive target can be repaired with probability *r*.

$$
\otimes \xrightarrow{r} \bigcirc \qquad \otimes \xrightarrow{1-r} \otimes
$$

$$
\bigcirc \xrightarrow{1} \bigcirc
$$

5 Behaviors of targets are independent.

 Ω

Definitions

- \bullet Let Z_k be the (random) number of deactivated targets in the cell at time *k*.
- $2 \; k = 0$ corresponds to the beginning of treatment.
- \bullet (Z_k) is a Markov chain with transition probability matrix:

$\Pi = PR$

- (2) (Z_k) is valued in $\{0, 1, \dots, m\}$ and m is an absorbing state.
- \bullet A **tumor** is a collection of n_0 independent and non-interacting cells.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Properties of the above model

- ¹ The parameters are *m*, *q* and *r*.
- ² We can measure efficiency of the treatment with:
	- lifetime of cells and lifetime of the tumor ([KBV], JTB 2012)
	- ² The **Tumor Control Probability (TCP)** :

$$
\mathsf{TCP}_k := \left(\mathsf{P}(Z_k = m | Z_0 = i_0)\right)^{n_0}
$$

where n_0 is the initial number of cells.

- ³ Easy numerical calculations of the above quantities.
- ⁴ An "optimization" of the treatment via a balance between efficiency and the significant damages on the adjacent normal tissues is possible

 Ω

イロト イ押 トイラト イラト

Limitations

- ¹ A slightly more general model can take into consideration proliferation of cells but with an unsatisfactory way.
- 2 It clear that :

$$
\mathit{TCP}_k := \left(P(Z_k = m | Z_0 = i_0)\right)^{n_0} \rightarrow 0, \text{ as } n_0 \rightarrow \infty.
$$

Note that

$$
TCP_k = \left[\Pi^k(i_0, m)\right]^{n_0}.
$$

E

 QQ

 $A \oplus A \oplus A \oplus A \oplus A$

4.000.00

2. ONE WAY TO RECOVER EFFICIENCY

(ioint work with T. Bastogne)

The main idea is to choose q as an increasing function of n_0 so that:

$$
\lim_{n_0\to\infty}q(n_0)=1, \lim_{n_0\to\infty}TCP_k=1.
$$

Theorem 1 *Let* $0 \le i_0 \le m$ and $\varepsilon := 1 - q$. Then $1 - \Pi^k(i_0, m) \sim (m - i_0)(1 + (m - 1)r)^{k-1} \varepsilon^k, \quad \varepsilon \to 0.$

Remark Since the coefficient in front of ε^k is explicitly given in terms of $i₀$, *m*, *r* and *k.* This permits interpretations.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Few words about the proof

Using definition of the matrix **P**, it can be proved easily that **P** admits the following asymptotic expansion :

$$
\mathbf{P} = \mathbf{P}_0 + \varepsilon \mathbf{P}_1 + \varepsilon^2 \mathbf{P}_2(\varepsilon).
$$

Since $\Pi = PR$ we have :

$$
\Pi = A_0 + \varepsilon A_1 + \varepsilon^2 A_2(\varepsilon)
$$

and

$$
\Pi^k = \left(A_0 + \varepsilon A_1 + \varepsilon^2 A_2(\varepsilon)\right)^k
$$

= $B_0 + \varepsilon B_1 + \varepsilon^2 B_2(\varepsilon)$.

Therefore

$$
\Pi^k(i_0,m)=1+a\varepsilon+\varepsilon o(1).
$$

The above Theorem says there are non-trivial cancelations.

 $\mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L}$

F

Proposition 2

Let $\theta_0 \in]0, 1[$ *. Let q such that*

$$
\varepsilon=1-q:=\frac{\psi_1}{n_0^{1/k}}
$$

where

$$
\psi_1 = \psi_1(i_0, m, r, k, \theta_0) := \left(\frac{-\ln(\theta_0)}{(m - i_0)(1 + (m - 1)r)^{k-1}}\right)^{1/k}
$$

Then

 $\lim_{n_0\to\infty}$ *TCP*_{*k*} = θ_0 .

造

 QQ

イロト 不優 トイ磨 トイ磨 トー

Application

Recall that $q=\left(1-\text{exp}\{-\alpha u_0-\beta u_0^2\}\right)^{1/m}$. Suppose that $\beta=0$. Since u_0 is large, then:

$$
q=\left(1-e^{-\alpha u_0}\right)^{1/m}=1-\frac{e^{-\alpha u_0}}{m}+\cdots.
$$

and
$$
1 - q = \frac{\psi_1}{n_0^{1/k}}
$$
 as soon

$$
u_0 \sim \frac{\ln(n_0)}{\alpha k} \quad (\Rightarrow TCP_k \sim \theta_0).
$$

 QQ

K ロ ト K 個 ト K 君 ト K 君 ト 一君

Let us introduce a new parameter to measure efficiency of the treatment: \sim 10

$$
\widehat{\mathit{TCP}}_k(\alpha) := \mathbb{P}\Big(\frac{N_k}{n_0} \leq \alpha\Big)
$$

where $\alpha \in [0, 1]$ and N_k is the number of cells still alive at time *k*.

• The goal is to have

$$
\widehat{\mathit{TCP}}_k(\alpha) \approx 1.
$$

• Note that:

$$
\mathit{TCP}_k \leq \widehat{\mathit{TCP}}_k(\alpha)
$$

and

$$
\mathit{TCP}_k = \widehat{\mathit{TCP}}_k(0).
$$

 \Rightarrow

 QQQ

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Theorem 3

Let $\theta_0 \in]0, 1[$ *. Suppose that* $\alpha \approx 0$ *and* n_0 *is large. If we take:*

$$
1-q = \psi_2 \times \left(1-\psi_3\sqrt{1-\alpha}\frac{1}{\sqrt{\alpha n_0}}\right)^{1/k} \alpha^{1/k}
$$

then:

$$
\widehat{\mathit{TCP}}_k(\alpha) \approx \theta_0
$$

where

$$
\psi_2 := \left(\frac{1}{(m-i_0)(1+(m-1)r)^{k-1}}\right)^{1/k}, \quad \psi_3 := -2\ln(1-\theta_0).
$$

 QQ

K ロ ト K 個 ト K 君 ト K 君 ト 一君

In particular if moreover $n_0 \alpha \gg 1$ then:

$$
1 - q \approx \psi_2 \alpha^{1/k} \Rightarrow \widehat{TCP}_k(\alpha) \approx \theta_0.
$$

Remark Recall that $1 - q = \frac{\psi_1}{n_0^{1/k}} \Rightarrow TCP_k \approx \theta_0.$

P. Vallois (IECL) [Stoch models for tumors](#page-0-0) Angers, 09 december 2013 14/17

重

 299

K ロ メ イ 団 メ ス ミ メ ス ミ メ

3. A BRANCHING MODEL

(a joint work in progress with T. Bastogne and J.-L. Marchand)

We consider a new model where the cells are labeled *abc* where:

- ¹ *a* ∈ {0, 1, 2}. The cycle of a 2*bc* cell is 24 hours, the one of 1*bc* cell is 36 hours. A cell 0*bc* is quiescent.
- 2 $b = 1$ means that the cell has a restoration capacity, and $b = 0$ otherwise.
- ³ A stable cell *ab*0 always ends its cycle.
- **4** A total of 10 possible states.

Examples

- The cell 100 has a faithful proliferation 36H later and $100 \rightarrow 101 + 101$.
- **•** The cell 201 can have either a faithful proliferation 24H later $201 \rightarrow 201 + 201$, or a degradation 1H later 201 \rightarrow 100, or dies.

 QQ

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Let

- *Ze*(*t*) be the number of cells in state *e* at time *t*.
- *Z* ∗ (*t*) be the number of cells which are alive at time *t*.

Few features of the model

- $(Z_e(t))$ is a multitype branching process which is non-homogeneous in time.
- 14 parameters are necessary to describe the offspring distributions.
- This model is related to a phototherapy treatment, one shot.
- In practice, possibility to measure $Z^*(t)$ and therefore to have the empirical distribution of $\big(Z^*(t_1),\cdots,Z^*(t_k)\big).$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Two main results

- ¹ We have recursive equations with allow to calculate numerically the Laplace transform of $Z^*(t)$ and its first moment, for t less than one month.
- ² The model is identifiable, i.e. if for any *t*,

$$
Z^*(\theta,t) \stackrel{(d)}{=} Z^*(\theta',t).
$$

then

$$
\theta = \theta'.
$$

 Ω