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Branching processes with neutral mutations: a biological
motivation

• In a branching process, each individual behaves independently of
the others  no interaction between individuals

• Example: assume a new allele of a gene appeared recently,
positively selected

• small, increasing population, with little interaction
• recombinations may occur on the DNA sequence around the gene
 no influence on the selected allele, so recombination = neutral
mutations

• Biologists might want to detect if a particular allele is currently
positiviely selected

• take a sample of holders of this allele
• look at the recombination events that can be detected in the

sample on the DNA sequence around the gene
•  recombination tree (Sabeti et al., Nature 2002)
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Examples of recombination tree (Sabeti et al., Nature
2002)

Try to infer the growth rate of the population from data of the form
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Forward construction

Splitting tree forward in time (Geiger & Kersting 97)

We consider an asexual population where

6t

• individuals reproduce
independently

• have i.i.d. lifetime durations
distributed as some r.v. V

• during which they give birth at
constant rate b

• The law of this so-called splitting tree is characterized by the
finite measure Λ(dr) := bP(V ∈ dr)

• The population size process (Nt ; t ≥ 0) is a non-Markovian
branching process called (homogeneous, binary)
Crump–Mode–Jagers process.
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Backward genealogy

Representation backward in time

Starting from one single individual, the subtree spanned by the
individuals alive at time t can be represented as follows

6
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where the times H1,H2,H3 . . . are called coalescence times.
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Backward genealogy

Representation backward in time

This subtree can also be representes as this...

...or (as usual) this

? ?
? ?

? ?

t

H1 H1

H2 H2

H3 H3

cc c c c
? ?H4 H4

c c c c c
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Backward genealogy

Contour of a splitting tree

A splitting tree and the jumping contour process of its truncation
below time t .
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Backward genealogy

First result

Theorem (Lambert (2010))

The jumping contour of a splitting tree truncated below time t is a
strong Markov process. It is composed of successive excursions below t
of a Lévy process without negative jumps with Laplace exponent

ψ(x ) = x −
∫
(0,∞]

(1− e−rx )Λ(dr).

As a consequence, conditionally on Nt 6= 0, the coalescence times
H1,H2,H3 . . . of the splitting tree form a sequence of i.i.d. positive
random variables killed at its first value larger than t.
In addition,

P(H > x ) =
1

W (x )
.

where W is the scale function of the Lévy process, positive, increasing,
s.t. W (0) = 1 and the Laplace transform of W is 1/ψ.
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Backward genealogy

Examples

• Yule process with (birth) rate b

W (x ) = ebx

• Noncritical birth–death processes with birth rate b, death rate d ,
growth rate r := b − d

W (x ) = 1 +
b

r
(erx − 1)

• Critical birth–death processes with birth/death rate b

W (x ) = 1 + bx
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Coalescent point process

Coalescent point process (Popovic 04, Aldous & Popovic
05)

A coalescent point process is the genealogy generated by a sequence of
arbitrary i.i.d. positive r.v. (Hi)i≥1 as below.

Here, we define W (x ) as 1/P(H1 > x ).

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15
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Definition

Assumptions on the mutation scheme

Now conditional on the genealogy, point mutations occur randomly.

1 mutations occur at constant rate θ during lifetimes, or, if one
only considers the genealogy of individuals alive at time t , on
branch lengths of the coalescent point process

2 mutations are neutral: they have no effect on the genealogy
(birth rate, lifetimes...)

3 each mutation gives a new type, or allele, to its carrier
(infinitely-many alleles model)

4 types are transmitted to the offspring born after this mutation
and before the next one.
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Definition

Mutation at rate θ

N = 9 alive individuals at time t , of 6 different types:
4 types of abundance 1, 1 type of abundance 2, and 1 type of
abundance 3.

s
s

s
s
s
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Clonal splitting tree

Clonal splitting trees

• the genalogy of clonal individuals is a splitting tree with (birth
rate b and) lifetime duration distributed as

Vθ := min(V ,E ),

where E is an exponential variable with parameter θ independent
of V .

• to a clonal splitting tree is associated a clonal coalescent point
process with i.i.d. branch lengths H θ

1 ,H
θ
2 , . . . whose inverse of the

tail distribution is denoted by Wθ

P(H θ > s) =:
1

Wθ(s)
.
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Clonal splitting tree

Clonal splitting trees

Proposition (Lambert (2009))

For a coalescent point process with branch lengths H1,H2, . . ., we can
define H θ as

max(H1, . . . ,HBθ ),

where Bθ is the index of first virgin lineage (i.e., carrying no mutation
since it has split from ancestral lineage 0).
The scale function Wθ associated with clonal trees is related to W via

W ′
θ(x ) = e−θxW ′(x ) x ≥ 0,

with Wθ(0) = 1.
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Clonal splitting tree

Virgin lineage

Below, the index of the first virgin lineage is 8
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Clonal splitting tree

Finer result on clonal coalescent point process

Bθ
i = distances between consecutive virgin lineages

H θ
i = max of branch lengths between consecutive virgin lineages

=⇒ (Bθ
i ,H

θ
i ) are i.i.d.

aa aaa aa a

t tt tt tt
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Clonal splitting tree

Finer result on clonal coalescent point process

We are interested in the joint law of H θ and Bθ. Set

Wθ(x , s) :=
1

1− E(sBθ ,H θ ≤ x )
x ≥ 0, s ∈ [0, 1].

In particular, Wθ(x , 1) = Wθ(x ).

Theorem (C. & Lambert 2012)

We have
∂

∂x
Wθ(x , s) = e−θx

∂

∂x
W (x , s) x ≥ 0,

with Wθ(0, γ) = 1, where

W (x , s) :=
1

1− sP(H ≤ x )
.

In particular, W (x , 1) = W (x ).
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Expected frequency spectrum

Frequency spectrum

We introduce the notation:

• A(t) := number of distinct types in the population at time t

• A(k , t) := number of types represented by k individuals at time t

• then ∑
k≥1

A(k , t) = A(t) and
∑
k≥1

kA(k , t) = Nt

• (A(k); k ≥ 1) is called the frequency spectrum
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Expected frequency spectrum

Clonal coalescent point process

s

s s s s s s s s
s

s
s

a
y + dy

i
lineage first virgin lineage

a a a not carrying a
last

Goal. Compute the number of alleles of age in (y , y + dy) and carried
by k alive individuals at time t , jointly with Nt .
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Expected frequency spectrum

Clonal coalescent point process

s

s
a

y + dy

i
lineage first virgin lineage

a a a not carrying a
last
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Goal. Compute the number of alleles of age in (y , y + dy) and carried
by k alive individuals at time t , jointly with Nt .
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Expected frequency spectrum

Expected frequency spectrum

Recall Nt is the population size at time t .

Theorem (C. & Lambert 2012)

If A(k , t , dy) denotes the number of alleles of age in (y , y + dy) and
carried by k alive individuals at time t, then

E
(
sNt−1A(k , t , dy) | Nt 6= 0

)
= θ dy

W (t ; s)2

W (t)

e−θy

Wθ(y ; s)2

(
1− 1

Wθ(y ; s)

)k−1
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Proof

Proof (s = 1)

Let Ci(y , dy):= {i ≤ Nt − 1 : Hi ≥ y and the ith branch has

a mutation of age in (y , y + dy)}
Di(y):= {the ith branch type at time t − y has one alive clone at time t}
Ei(k , y):= {the ith branch type at time t − y has k alive clones at time t}

Then Aθ(k , t , dy) =
∑
i≥0

1Ci (y,dy)∩Ei (k ,y). Now

P?(Ci(y , dy) ∩ Ei(k , y)) = P?(Ci(y , dy))P?(D0(y))P?(E0(k , y) | D0(y))
and we claim that ∑

i≥0

P?(Ci(y , dy)) = θ dy
W (t)

W (y)
(1)

P?(D0(y) =
W (y)e−θy

Wθ(y)
(2)

P?(E0(k , y) | D0(y)) =
1

Wθ(y)

(
1− 1

Wθ(y)

)k−1

. (3)
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Proof

Proof

Proof of (1):

P?(Ci(y , dy)) = P?(Nt − 1 ≥ i)θ dy (1i=0 + 1i≥1P(H ≥ y | H < t)) .

The result follows by expressing P(H ≥ y | H < t) in terms of W and
summing over i .

Proof of (2): the next mutation on branch i after time t − y occurs
after an exponential time of parameter θ. Distinguishing whether this
time is larger or smaller than y , we get

P?(D0(y)) = e−θy +

∫ y

0

dx θe−θx
(

1− Wθ(y − x )

Wθ(y)

)
.

The result then follows from an integration by parts.

The proof of (3) is trivial by definition of Wθ.
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Proof

Applications

The main interest of our result is that we obtain exact formulas for
the expected frequency spectrum.

For example, combining this with standard results on
Crump–Mode–Jagers process (Jagers & Nerman (1981–1984), Täıb
(1992)), we can obtain an exact expression for the

a.s. limit of
A(k , t , a, b)

Nt
,

where A(k , t , a, b) denotes the number of alleles of age in (a, b)
carried by k alive individuals at time t .
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Results in expectation

Preliminary remark

We consider a supercritical splitting tree with Malthusian parameter
α, so that Nt increases like eαt .

Since θ is an additional death rate for clonal families,

clonal families are

 supercritical if α > θ
critical if α = θ

subcritical if α < θ.
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Results in expectation

Notation

We define

• Mt(x ; a, b)= number of families of size ≥ x and of age in [a, b]

Mt(x ; a, b) :=
∑
k≥x

∫ b

a

A(k , t , dy)

• Lt(x )= number of families of size ≥ x

Lt(x ) := Mt(x ; 0,∞)

• Ot(a)= number of families of age ≥ a

Ot(a) := Mt(0; a,∞).

Goal. Find xt such that E Lt(xt) = O(1) and at such that
E Ot(at) = O(1), as t →∞.
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Results in expectation

Case α > θ

Assume α > θ

Proposition (C. & Lambert 2013)

For any c > 0 and a < b,

EMt

(
ce(α−θ)t ; t − b, t − a

)
= O(1),

so that largest families have sizes cN 1−θ/α and are also the oldest
ones (born at times O(1)).
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Results in expectation

Case α < θ: largest families

Assume α < θ and set β := θ/(θ − α)

Proposition (C. & Lambert 2013)

For some other explicit constant b, set

xt := b (αt − β log(t))

Then for any c

ELt(xt + c) ∼ EMt

(
xt + c; (1− ε) log(t)

θ − α
, (1 + ε)

log(t)

θ − α

)
= O(1),

so that largest families have sizes b(log(N )− β log(log N )) + c and

they all have age ∼ log(t)

θ − α
.
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Results in expectation

Case α < θ: oldest families

Assume α < θ and set γ := α/θ < 1

Proposition (C. & Lambert 2013)

For any a,
EOt(γt + b) = O(1).

so that oldest families have ages γt + a.
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Results in expectation

Case α = θ: largest families

Assume α = θ and set β := 1/(2α)

Proposition (C. & Lambert 2013)

For some explicit constant b, set

xt := b (t − β log(t))
2

Then for any c

ELt(xt + ct) ∼ EMt

(
xt + ct ; (1− ε) t

2
, (1 + ε)

t

2

)
= O(1),

so that largest families have sizes b(log(N )− β log(log N ) + c)2 and
they all have age ∼ t/2.
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Results in expectation

Case α = θ: oldest families

Assume α = θ and set γ := 1/α

Proposition (C. & Lambert 2013)

For any a,
EOt(t − γ log(t) + a) = O(1).

so that oldest families have ages t − γ log(t) + a.
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Convergence in distribution

Convergence in distribution: idea of the method

Take the coalescent point process at time t , fix st such that st →∞,
and define

N ′t−st := number of indiv. alive at time t − st having alive desc. at time t

= number of subtrees (Ti) grafted on branch lengths ≥ st

!%%%!!!
?

6

?

6

st

t − st

T1
T2 · · · TN ′t−st

· · ·

N ′t−st
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Convergence in distribution

Convergence in distribution: idea of the method

Set

X
(k)
t := size of the k -th largest family in the whole population

Yi := size of the largest family in subtree Ti .

When α ≤ θ, we choose

st :=

{
log(t) 1−ε

θ−α if α < θ

t 1−ε
2 if α = θ.

This choice entails, conditionally on Nt 6= 0,

• N ′t−st →∞

• (X
(1)
t , . . . ,X

(k)
t )= first k order statistics of {Y1, . . . ,YN ′t−st

} with

high probability

• P(Y ≥ xt + c) = P(Lst (xt + c) ≥ 1) ∼ E(Lst (xt + c))



Introduction Forward and backward genealogy Mutation scheme Small families Largest or oldest families

Convergence in distribution

Convergence in distribution: idea of the method

The same results hold with

A
(k)
t := age of the k -th oldest family in the whole population

Yi := age of the oldest family in subtree Ti ,

and

st :=

{
αt / θ if α < θ

t − log(t) / α if α = θ.
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Convergence in distribution

Convergence in distribution: case α = θ

Assume α = θ.

Theorem (C. & Lambert 2013)

There are some explicit constants b, c, u, such that

lim
t→∞

P(X
(1)
t < b(αt2 − t log t) + xt | Nt 6= 0) =

1

1 + u.e−cx
.

More specifically, (
X

(k)
t

t − b(αt − log t); k ≥ 1) converge (fdd) to the
(ranked) atoms of a mixed Poisson point measure with intensity

E e−cxdx ,

where E is some exponential r.v.
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Convergence in distribution

Convergence in distribution: case α = θ

Assume again α = θ.

Theorem (C. & Lambert 2013)

There is some explicit constant v > 0 such that

lim
t→∞

P(A
(1)
t < t − log t

α
+ a | Nt 6= 0) =

1

1 + v .e−αa
.

More specifically, (A
(k)
t − t + log(t)/α; k ≥ 1) converge (fdd) to the

(ranked) atoms of a mixed Poisson point measure with intensity

E e−αa da,

where E is some exponential r.v.
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Convergence in distribution

Convergence in distribution: case α < θ

Assume α < θ.

Theorem (C. & Lambert 2013)

There are some explicit constants u, c, such that

lim
t→∞

P(X
(1)
t < b(αt − β log(t)) + k | Nt 6= 0) =

1

1 + u.ck
.

More specifically, along some subsequence,

(X
(k)
t − b(αt − β log(t)); k ≥ 1) converge (fdd) to the (ranked) atoms

of a mixed Poisson point measure with intensity

E
∑
j∈Z

cj δj ,

where E is some exponential r.v.
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Convergence in distribution

Convergence in distribution: case α < θ

Assume again α < θ.

Theorem (C. & Lambert 2013)

There is some explicit constant v > 0 such that

lim
t→∞

P(A
(1)
t < (αt / θ) + a | Nt 6= 0) =

1

1 + v .e−θa
.

More specifically, (A
(k)
t − (αt / θ); k ≥ 1) converge (fdd) to the

(ranked) atoms of a mixed Poisson point measure with intensity

E e−θa da,

where E is some exponential r.v.
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Convergence in distribution

Questions and future works

• We have obtained precise results on the size (resp. age) of the
largest (resp. oldest) families in the case of (sub)critical clonal
families.

• Open questions:

• Convergence in distribution in the supercritical case?
• Why an age t/2 for the oldest families in the critical case?

• Other question:

• The case of mutations at birth: Richard (2012), C., Lambert,
Richard (2012).

• To make the link with Sabeti’s recombination tree, we should
study the the point measure of the sizes of the largest families as
a process of the mutation rate θ (= distance to the gene on the
DNA sequence).

• Other questions that can be tackled with coalescent point
processes: time to the most recent common ancestor at time t as
a process indexed by t ... (see also the talk of Amaury on
wednesday)
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