		Largest or oldest families

processes

Amaury Lambert² Nicolas Champagnat¹

¹IECN & INRIA ²UPMC, LPMA

SMEEG conference, Angers, 9 December 2013

Introduction O				Largest o	
5					

Branching processes with neutral mutations: a biological motivation

- In a branching process, each individual behaves independently of the others \rightsquigarrow no interaction between individuals
- **Example:** assume a new allele of a gene appeared recently, positively selected
 - small, increasing population, with little interaction
 - recombinations may occur on the DNA sequence around the gene
 no influence on the selected allele, so recombination = neutral mutations
- Biologists might want to detect if a particular allele is currently positiviely selected
 - take a sample of holders of this allele
 - look at the recombination events that can be detected in the sample on the DNA sequence around the gene

Sac

• \rightarrow recombination tree (Sabeti et al., Nature 2002)

Introduction O	Forward and backward genealogy	Mutation scheme	Small families	Largest or oldest families
Examples	s of recombination	tree (Sabe	ti et al N	lature

Try to infer the growth rate of the population from data of the form

Introduction		Largest or oldest families
Bibliography		

Branching processes with mutations

- Yule (1924): pure-birth process, species and genera
- Griffiths & Pakes (1988): Galton–Watson tree and independent mutations with fixed probability
- Jagers & Nerman (1981–1984), Taïb (1992): general branching process, mutation at birth
- Abraham & Delmas (2007): continuous-state branching processes, all mutants have the same type
- Bertoin (2009, 2010, 2011): Galton–Watson, allelic partition of total descendance
- Sagitov & Serra (2009, 2011): waiting time to *n*-th mutation

	Forward and backward genealogy ●○○○○○○		Largest or oldest families
Forward construction			

Splitting tree forward in time (Geiger & Kersting 97)

We consider an asexual population where

- individuals reproduce independently
- have i.i.d. lifetime durations distributed as some r.v. V
- during which they give birth at constant rate *b*

- The law of this so-called splitting tree is characterized by the finite measure $\Lambda(dr) := b\mathbb{P}(V \in dr)$
- The population size process $(N_t; t \ge 0)$ is a non-Markovian branching process called (homogeneous, binary) Crump-Mode-Jagers process.

	Forward and backward genealogy ○●○○○○○		Largest or oldest families
Backward genealogy			

Representation backward in time

Starting from one single individual, the subtree spanned by the individuals alive at time t can be represented as follows

where the times $H_1, H_2, H_3...$ are called coalescence times.

	Forward and backward genealogy ○○●○○○○		Largest or oldest families
Backward genealogy			

Representation backward in time

This subtree can also be representes as this...

... or (as usual) this

	Forward and backward genealogy ○○○●○○○		Largest or oldest families
Backward genealogy			

Contour of a splitting tree

A splitting tree and the jumping contour process of its truncation below time t.

	Forward and backward genealogy ○○○○●○○		Largest or oldest families
Backward genealogy			

First result

Theorem (Lambert (2010))

The jumping contour of a splitting tree truncated below time t is a strong Markov process. It is composed of successive excursions below t of a Lévy process without negative jumps with Laplace exponent

$$\psi(x) = x - \int_{(0,\infty]} (1 - e^{-rx}) \Lambda(dr).$$

As a consequence, conditionally on $N_t \neq 0$, the coalescence times $H_1, H_2, H_3 \dots$ of the splitting tree form a sequence of *i.i.d.* positive random variables killed at its first value larger than t. In addition,

$$\mathbb{P}(H > x) = \frac{1}{W(x)}.$$

Sac

where W is the scale function of the Lévy process, positive, increasing, s.t. W(0) = 1 and the Laplace transform of W is $1/\psi$.

	Forward and backward genealogy		Largest or oldest families
Backward genealogy			

Examples

• Yule process with (birth) rate b

$$W(x) = e^{bx}$$

• Noncritical birth–death processes with birth rate b, death rate d, growth rate r := b - d

$$W(x) = 1 + \frac{b}{r} (e^{rx} - 1)$$

• Critical birth–death processes with birth/death rate b

$$W(x) = 1 + bx$$

< <p>I >

nac

	Forward and backward genealogy		Largest or oldest families
Coalescent point proc	255		

Coalescent point process (Popovic 04, Aldous & Popovic 05)

A coalescent point process is the genealogy generated by a sequence of arbitrary i.i.d. positive r.v. $(H_i)_{i\geq 1}$ as below.

Here, we define W(x) as $1/\mathbb{P}(H_1 > x)$.

	Mutation scheme	Largest or oldest families
Definition		

Assumptions on the mutation scheme

Now conditional on the genealogy, point mutations occur randomly.

- 1 mutations occur at constant rate θ during lifetimes, or, if one only considers the genealogy of individuals alive at time t, on branch lengths of the coalescent point process
- 2 mutations are neutral: they have no effect on the genealogy (birth rate, lifetimes...)
- each mutation gives a new type, or allele, to its carrier (infinitely-many alleles model)
- (a) types are transmitted to the offspring born after this mutation and before the next one.

	Mutation scheme	Largest or oldest families
Definition		

Mutation at rate θ

N = 9 alive individuals at time t, of 6 different types: 4 types of abundance 1, 1 type of abundance 2, and 1 type of abundance 3.

		Mutation scheme	Largest or oldest families
Clonal splitting tree			
Clonal s	olitting trees		

• the genalogy of *clonal individuals* is a splitting tree with (birth rate *b* and) lifetime duration distributed as

 $V_{\theta} := \min(V, E),$

where E is an exponential variable with parameter θ independent of V.

• to a clonal splitting tree is associated a clonal coalescent point process with i.i.d. branch lengths $H_1^{\theta}, H_2^{\theta}, \ldots$ whose inverse of the tail distribution is denoted by W_{θ}

$$\mathbb{P}(H^{\theta} > s) =: \frac{1}{W_{\theta}(s)}$$

	Mutation scheme ○○○●○○○	Largest or oldest families
Clonal splitting t		

Clonal splitting trees

Proposition (Lambert (2009))

For a coalescent point process with branch lengths H_1, H_2, \ldots , we can define H^{θ} as

 $\max(H_1,\ldots,H_{B^{\theta}}),$

where B^{θ} is the index of first virgin lineage (i.e., carrying no mutation since it has split from ancestral lineage 0). The scale function W_{θ} associated with clonal trees is related to W via

$$W'_{\theta}(x) = e^{-\theta x} W'(x) \qquad x \ge 0,$$

with $W_{\theta}(0) = 1$.

日 日 三 三 三 三 三 三 〇 〇

	Mutation scheme ○○○○●○○	Largest or oldest families
Clonal splitting tree		

Virgin lineage

Below, the index of the first virgin lineage is 8

	Mutation scheme	Largest or oldest families
Clonal splitting tree		

Finer result on clonal coalescent point process

 $\begin{array}{l} B_i^{\theta} = \text{distances between consecutive virgin lineages} \\ H_i^{\theta} = \max \text{ of branch lengths between consecutive virgin lineages} \\ \Longrightarrow (B_i^{\theta}, H_i^{\theta}) \text{ are i.i.d.} \end{array}$

	Mutation scheme	Largest or oldest families
Clonal splitting tree		

Finer result on clonal coalescent point process

We are interested in the joint law of H^{θ} and B^{θ} . Set

$$W_{\theta}(x,s) := \frac{1}{1 - \mathbb{E}(s^{B^{\theta}}, H^{\theta} \le x)} \qquad x \ge 0, s \in [0,1].$$

In particular, $W_{\theta}(x, 1) = W_{\theta}(x)$.

Theorem (C. & Lambert 2012)

We have

$$\frac{\partial}{\partial x}W_{\theta}(x,s) = e^{-\theta x}\frac{\partial}{\partial x}W(x,s) \qquad x \ge 0,$$

with $W_{\theta}(0,\gamma) = 1$, where

$$W(x,s) := \frac{1}{1 - s\mathbb{P}(H \le x)}$$

In particular, W(x,1) = W(x).

		Small families ●○○○○○○	Largest or oldest families
Expected frequency sp	ectrum		

Frequency spectrum

We introduce the notation:

- A(t) := number of distinct types in the population at time t
- A(k, t) := number of types represented by k individuals at time t
- then

$$\sum_{k \ge 1} A(k, t) = A(t) \quad \text{ and } \quad \sum_{k \ge 1} k A(k, t) = N_t$$

nac

• $(A(k); k \ge 1)$ is called the frequency spectrum

		Small families ○●○○○○○	Largest or oldest families
Expected frequency	spectrum		

Clonal coalescent point process

Goal. Compute the number of alleles of age in (y, y + dy) and carried by k alive individuals at time t, jointly with N_t .

		Small families ○○●○○○○	Largest or oldest families
Expected frequency s	spectrum		

Clonal coalescent point process

Goal. Compute the number of alleles of age in (y, y + dy) and carried by k alive individuals at time t, jointly with N_t .

		Small families ○○○●○○○	Largest or oldest families
Expected frequency s	spectrum		

Expected frequency spectrum

Recall N_t is the population size at time t.

Theorem (C. & Lambert 2012)

If A(k, t, dy) denotes the number of alleles of age in (y, y + dy) and carried by k alive individuals at time t, then

$$\mathbb{E}\left(s^{N_t - 1}A(k, t, dy) \mid N_t \neq 0\right) = \theta \ dy \ \frac{W(t; s)^2}{W(t)} \ \frac{e^{-\theta y}}{W_{\theta}(y; s)^2} \left(1 - \frac{1}{W_{\theta}(y; s)}\right)^{k - 1}$$

Introduction O	Forward and backward genealogy	Mutation scheme	Small families ○○○○●○○	Largest or oldest families
Proof				
Proof (s = 1)			

Let
$$C_i(y, dy) := \{i \le N_t - 1 : H_i \ge y \text{ and the } i\text{th branch has}$$

a mutation of age in $(y, y + dy)\}$

 $D_i(y) := \{ \text{the } i \text{th } \text{branch type at time } t - y \text{ has one alive clone at time } t \}$ $E_i(k, y) := \{ \text{the } i \text{th } \text{branch type at time } t - y \text{ has } k \text{ alive clones at time } t \}$

Then
$$A_{\theta}(k, t, dy) = \sum_{i \ge 0} \mathbb{1}_{C_i(y, dy) \cap E_i(k, y)}.$$
 Now
$$\mathbb{P}^{\star}(C_i(y, dy) \cap E_i(k, y)) = \mathbb{P}^{\star}(C_i(y, dy))\mathbb{P}^{\star}(D_0(y))\mathbb{P}^{\star}(E_0(k, y) \mid D_0(y))$$
and we claim that

$$\sum_{i\geq 0} \mathbb{P}^{\star}(C_i(y, dy)) = \theta \, dy \, \frac{W(t)}{W(y)} \tag{1}$$
$$\mathbb{P}^{\star}(D_0(y) = \frac{W(y)e^{-\theta y}}{W(y)} \tag{2}$$

$$\mathbb{P}^{\star}(E_0(k,y) \mid D_0(y)) = \frac{1}{W_{\theta}(y)} \left(1 - \frac{1}{W_{\theta}(y)}\right)^{k-1}.$$
(3)

Introduction O Proof	Forward and backward genealogy	Mutation scheme	Small families ○○○○○●○	Largest or oldest families
Proof				

Proof of (1):

 $\mathbb{P}^{\star}(C_{i}(y, dy)) = \mathbb{P}^{\star}(N_{t} - 1 \ge i)\theta \, dy \, (\mathbb{1}_{i=0} + \mathbb{1}_{i \ge 1}\mathbb{P}(H \ge y \mid H < t)).$

The result follows by expressing $\mathbb{P}(H \ge y \mid H < t)$ in terms of W and summing over *i*.

Proof of (2): the next mutation on branch *i* after time t - y occurs after an exponential time of parameter θ . Distinguishing whether this time is larger or smaller than y, we get

$$\mathbb{P}^{\star}(D_0(y)) = e^{-\theta y} + \int_0^y dx \,\theta e^{-\theta x} \left(1 - \frac{W_{\theta}(y-x)}{W_{\theta}(y)}\right).$$

The result then follows from an integration by parts.

The **proof of (3)** is trivial by definition of W_{θ} .

		Small families ○○○○○●	Largest or oldest families
Proof			
Applica	itions		

The main interest of our result is that we obtain exact formulas for the expected frequency spectrum.

For example, combining this with standard results on Crump–Mode–Jagers process (Jagers & Nerman (1981–1984), Taïb (1992)), we can obtain an exact expression for the

a.s. limit of
$$\frac{A(k, t, a, b)}{N_t}$$
,

Sac

where A(k, t, a, b) denotes the number of alleles of age in (a, b) carried by k alive individuals at time t.

		Largest or oldest families
Results in expectation		

Preliminary remark

We consider a supercritical splitting tree with Malthusian parameter α , so that N_t increases like $e^{\alpha t}$.

Since θ is an additional death rate for clonal families,

	supercritica	l if	$\alpha > \theta$
clonal families are	critical	if	$\alpha = \theta$
	subcritical	if	$\alpha < \theta$.

		Largest or oldest families ○●○○○○○○○○○○○○○
Results in expectation		

Notation

We define

• $M_t(x; a, b)$ = number of families of size $\geq x$ and of age in [a, b]

$$M_t(x; a, b) := \sum_{k \ge x} \int_a^b A(k, t, dy)$$

• $L_t(x)$ = number of families of size $\geq x$

$$L_t(x) := M_t(x; 0, \infty)$$

• $O_t(a)$ = number of families of age $\geq a$

$$O_t(a) := M_t(0; a, \infty).$$

Goal. Find x_t such that $\mathbb{E} L_t(x_t) = O(1)$ and a_t such that $\mathbb{E} O_t(a_t) = O(1)$, as $t \to \infty$.

		Largest or oldest families
Results in expectation		

Case
$$\alpha > \theta$$

Assume $\alpha > \theta$

Proposition (C. & Lambert 2013)

For any c > 0 and a < b,

$$\mathbb{E}M_t\left(ce^{(\alpha-\theta)t};t-b,t-a\right)=O(1),$$

so that largest families have sizes $cN^{1-\theta/\alpha}$ and are also the oldest ones (born at times O(1)).

(日)
 (日)

		Largest or oldest families
Results in expectation		

Case $\alpha < \theta$: largest families

Assume $\alpha < \theta$ and set $\beta := \theta/(\theta - \alpha)$

Proposition (C. & Lambert 2013)

For some other explicit constant b, set

 $x_t := b\left(\alpha t - \beta \log(t)\right)$

Then for any c

$$\mathbb{E}L_t(x_t+c) \sim \mathbb{E}M_t\left(x_t+c; (1-\epsilon)\frac{\log(t)}{\theta-\alpha}, (1+\epsilon)\frac{\log(t)}{\theta-\alpha}\right) = O(1),$$

naa

so that largest families have sizes $b(\log(N) - \beta \log(\log N)) + c$ and they all have $age \sim \frac{\log(t)}{\theta - \alpha}$.

		Largest or oldest families
Results in expectation		

Case $\alpha < \theta$: oldest families

Assume
$$\alpha < \theta$$
 and set $\gamma := \alpha/\theta < 1$

Proposition (C. & Lambert 2013)

For any a,

$$\mathbb{E}O_t(\gamma t + b) = O(1).$$

so that oldest families have ages $\gamma t + a$.

		Largest or oldest families
Results in expectation		

Case $\alpha = \theta$: largest families

Assume $\alpha = \theta$ and set $\beta := 1/(2\alpha)$

Proposition (C. & Lambert 2013)

For some explicit constant b, set

 $x_t := b \left(t - \beta \log(t) \right)^2$

Then for any c

$$\mathbb{E}L_t(x_t + ct) \sim \mathbb{E}M_t\left(x_t + ct; (1 - \epsilon)\frac{t}{2}, (1 + \epsilon)\frac{t}{2}\right) = O(1),$$

so that largest families have sizes $b(\log(N) - \beta \log(\log N) + c)^2$ and they all have age $\sim t/2$.

□
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

		Largest or oldest families
Results in expectation		

Case $\alpha = \theta$: oldest families

Assume $\alpha = \theta$ and set $\gamma := 1/\alpha$

Proposition (C. & Lambert 2013)

For any a,

$$\mathbb{E}O_t(t - \gamma \log(t) + a) = O(1).$$

so that oldest families have ages $t - \gamma \log(t) + a$.

			Largest or oldest families
Convergence in distrib	ution		

Convergence in distribution: idea of the method

Take the coalescent point process at time t, fix s_t such that $s_t \to \infty$, and define

 $N'_{t-s_t} :=$ number of indiv. alive at time $t - s_t$ having alive desc. at time t= number of subtrees (\mathcal{T}_i) grafted on branch lengths $\geq s_t$

Sac

			Largest or oldest families ○○○○○○○●○○○○○○
Convergence in distrib	ution		

Convergence in distribution: idea of the method

 Set

 $X_t^{(k)} :=$ size of the *k*-th largest family in the whole population

 $Y_i :=$ size of the largest family in subtree \mathcal{T}_i .

When $\alpha \leq \theta$, we choose

$$s_t := \begin{cases} \log(t) \frac{1-\varepsilon}{\theta-\alpha} & \text{if } \alpha < \theta \\ t \frac{1-\varepsilon}{2} & \text{if } \alpha = \theta. \end{cases}$$

This choice entails, conditionally on $N_t \neq 0$,

- $N'_{t-s_t} \to \infty$
- $(X_t^{(1)}, \ldots, X_t^{(k)})$ = first k order statistics of $\{Y_1, \ldots, Y_{N'_{t-s_t}}\}$ with high probability

•
$$\mathbb{P}(Y \ge x_t + c) = \mathbb{P}(L_{s_t}(x_t + c) \ge 1) \sim \mathbb{E}(L_{s_t}(x_t + c))$$

「日本」

			Largest or oldest families
Convergence in distrib	ution		

Convergence in distribution: idea of the method

The same results hold with

 $A_t^{(k)} :=$ age of the k-th oldest family in the whole population

 $Y_i :=$ age of the oldest family in subtree \mathcal{T}_i ,

and

$$s_t := \begin{cases} \alpha t \ / \ \theta & \text{if } \alpha < \theta \\ t - \log(t) \ / \ \alpha & \text{if } \alpha = \theta. \end{cases}$$

				Largest or oldest families	
Convergence in distribution					

Convergence in distribution: case lpha= heta

Assume $\alpha = \theta$.

Theorem (C. & Lambert 2013)

There are some explicit constants b, c, u, such that

$$\lim_{t \to \infty} \mathbb{P}(X_t^{(1)} < \frac{b(\alpha t^2 - t \log t) + xt}{1 + u \cdot e^{-cx}}) = \frac{1}{1 + u \cdot e^{-cx}}$$

More specifically, $(\frac{X_t^{(k)}}{t} - b(\alpha t - \log t); k \ge 1)$ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

$$\mathcal{E} e^{-cx} dx$$

where \mathcal{E} is some exponential r.v.

(日)
(日)</p

				Largest or oldest families	
Convergence in distribution					

Convergence in distribution: case $\alpha = \theta$

Assume again $\alpha = \theta$.

Theorem (C. & Lambert 2013)

There is some explicit constant v > 0 such that

$$\lim_{t \to \infty} \mathbb{P}(A_t^{(1)} < t - \frac{\log t}{\alpha} + a \mid N_t \neq 0) = \frac{1}{1 + v \cdot e^{-\alpha a}}.$$

More specifically, $(A_t^{(k)} - t + \log(t)/\alpha; k \ge 1)$ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

$$\mathcal{E} e^{-\alpha a} da$$

where \mathcal{E} is some exponential r.v.

				Largest or oldest families	
Convergence in distribution					

Convergence in distribution: case lpha < heta

Assume $\alpha < \theta$.

Theorem (C. & Lambert 2013)

There are some explicit constants u, c, such that

$$\lim_{t \to \infty} \mathbb{P}(X_t^{(1)} < b(\alpha t - \beta \log(t)) + k \mid N_t \neq 0) = \frac{1}{1 + u.c^k}$$

More specifically, along some subsequence, $(X_t^{(k)} - b(\alpha t - \beta \log(t)); k \ge 1)$ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

$$\mathcal{E}\sum_{j\in\mathbb{Z}}c^j\delta_j$$

where \mathcal{E} is some exponential r.v.

	Forward and backward genealogy			Largest or oldest families	
				000000000000000000000000000000000000000	
Convergence in distribution					

Convergence in distribution: case lpha < heta

Assume again $\alpha < \theta$.

Theorem (C. & Lambert 2013)

There is some explicit constant v > 0 such that

$$\lim_{t \to \infty} \mathbb{P}(A_t^{(1)} < (\alpha t / \theta) + a \mid N_t \neq 0) = \frac{1}{1 + v \cdot e^{-\theta a}}$$

More specifically, $(A_t^{(k)} - (\alpha t / \theta); k \ge 1)$ converge (fdd) to the (ranked) atoms of a mixed Poisson point measure with intensity

$$\mathcal{E} e^{-\theta a} da$$

where \mathcal{E} is some exponential r.v.

	Forward and backward genealogy			Largest or oldest families	
				00000000000000000	
Convergence in distribution					

Questions and future works

- We have obtained precise results on the size (resp. age) of the largest (resp. oldest) families in the case of (sub)critical clonal families.
- Open questions:
 - Convergence in distribution in the supercritical case?
 - Why an age t/2 for the oldest families in the critical case?
- Other question:
 - The case of mutations at birth: Richard (2012), C., Lambert, Richard (2012).
 - To make the link with Sabeti's recombination tree, we should study the the point measure of the sizes of the largest families as a process of the mutation rate θ (= distance to the gene on the DNA sequence).
 - Other questions that can be tackled with coalescent point processes: time to the most recent common ancestor at time t as a process indexed by t... (see also the talk of Amaury on wednesday)

 \equiv)

nac

P