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Stochastic nucleotidic substitution models

- A DNA sequence 7 is an element of {A, T,C,G}V, N € N*,
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

|A T C G - Diagonal entry —gqa, is the substitution rate of
Al AA A .
T - 2 2 nucleotide a, here gao = —3\.
Clx XA - A - Non-diagonal entry g, is the substitution rate
GlA xa of nucleotide a by b, here g.p, = .
_ _ .00 l : l
Time Axis ! | | 50 :
l .60 l l
50 ! l l l
! ! ! ! l
A C G G Initial Sequence

0-marks distributed according to a Poisson process with rate 4\. The
nucleotide is substituted by a with probability 1/4.
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Stochastic nucleotidic substitution models

Consequences
- Convergence in distribution at any site

- Convergenge in distribution of the whole sequence to the product
measure.

Problems

- (a1..-30)obs # (31)obs - - - (3)obs-

- The substitution rate 7(x) — a may depend on n(x — 1), n(x) and
n(x +1).

Famous example : CpG dinucleotides

- Rate C — T up to ten times larger when C is involved in a CpG (in fact
C*pG).
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JC+CpG model

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- A DNA sequence 7 is now doubly infinite, that is, an element of
{A,T,C,G}2.

- Keep Jukes and Cantor model

A T CG
Al 1 1 1
T|{1 - 1 1
cj1 1 - 1
G|1 1 1

- Superimpose "double" substitution mechanism

r

r
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Construction with marked Poisson point

processes
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or if n(x — 1,x) =CG and a =A.
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Properties

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- There exists a unique Markov process on o7 with the transition
rates defined before.

- The process is ergodic, its unique invariant probability measure 7 on 7%
is translation invariant and ergodic with respect to the translations on
Z.

- Any collections (7x)xes and (1y),ey are independent as soon as
dist(/, J) > 3.
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Simulate the evolution of a finite DNA
sequence

Add two
artificial sites

Extension

1 4

Transform the linear se-
quence into a circular one
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evolution

process with
marked Ppp's

X b——--—— X

N
and remove
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Substitution processes
- Only one coordinate changes in each transition.

- The transition mechanism is specified by a non-negative function ¢
defined on Z x o7 x X, with <7 a finite alphabet and X = 7%,

- We assume that, for any fixed site x and target a, the function c(x, a, -)
depends on i € X only through a finite set S? C Z depending on x and a.

Sufficient conditions for its existence
K =sup{c(x,a,n) : x€Z,ac g, ne X} < (1)
and s=sup{|S}| : x€Z,ac '} < 0. (2)

Example: JC4+CpG

A, _ [ 1+ ifp(x—1,x) = CG,
S ={x—-1,x} and C(X,Aan)_{l else,

. [ 147 ifp(x,x+1)=CG,
ST ={x,x+1} and c(x,T,n) —{ 1 else,

Sf = @ and C(X, Cﬂ?) - 17

SXG =0 and c(x,G,n)=1.
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‘Cut-and-paste’ process

- The transition mechanisms are circular permutations of finitely many
sites of Z and are specified by a transition probability matrix p on
Z x 7 and a cut rate per site p > 0.

- The value p - p(x, y) represents the rate at which the coordinate 7(x) is
transfered to site y. We assume that p is translation invariant on Z.

=== ={n(x) W*{n(y—l)\}jn(y)%"»

Sufficient condition for its existence: _ |x|p(0, x) < co
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Construction with marked Poisson point
processes

Axe du 1 |
LeMPS | (0),1,4)0(0,1,4)0(0,1,4)0 (0, 1,4)
A

0 0 |
(©,5,3)0(0,5,3)0(0,5,3)0
C G G

- Mark (O, x, y) distributed at rate p - p(x,y). If x < y, the contents of
sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents
of sites y, y + 1, ..., x are left circularly permuted.
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of sites y, y + 1, ..., x are left circularly permuted.
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Ergodicity for independent evolution models
with ‘cut-and-paste’

Theorem (Falconnet, Gantert and Saada)

Assume that the substitution rates are independent and are ruled by an
irreducible @-matrix. Then the process is ergodic and the invariant
measure is the product measure on Z.

- Especially, for any usual substitution model (JC69, K80, T92, etc.) and

any ‘cut-and-paste’ mechanism invariant by translation, the dynamic of
the process is ergodic.
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Ergodicity for substitution processes with
‘cut-and-paste’ mechanism

Theorem (Falconnet, Gantert and Saada)

Define
m=inf{c(x,a,n) : x€Z,ac o, ne X},
K =sup{c(x,a,n) : x€Z,ae o ,ne X}, (3)
S = MaxXxez,aca |53

Assume that
m>0 and (s—1)(K—m)<|d|m.

Then, for any p > 0, the superimposition of a substitution process and a
‘cut-and-paste’ mechanism is exponentially ergodic.

Especially, the JC+CpG+'cut-and-paste’ model is ergodic as soon as

r <4

Method : construction of a generalized dual process. Inspired from
Ferrari, Annals of probability (1990).
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Introduction of a marked branching
structure
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When we go back in time and the dual process meets

- a -mark at site x, the branch dies;

- a Z?-mark at site x, the branch dies and is replaced by 2 new branches.

- a (x,y)-mark, the involved branches are circularly permuted.
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Extension

- a Z?-mark at site x, the branch dies and is replaced by 2 new branches.

- a (x,y)-mark, the involved branches are circularly permuted.
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- a -mark at site x, the branch dies;
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Central idea

- When we go back in time and the dual process meets a d-mark at site x,
it is not necessary to go further to know the value of 7(x), because it is
determined at that point by an independent random variable.

- Conditions are obtained by coupling with a dying branching process.
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