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Nucleotidic substitution processes Extension

Stochastic nucleotidic substitution models

- A DNA sequence η is an element of {A,T,C,G}N , N ∈ N∗.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)
A T C G

A · λ λ λ
T λ · λ λ
C λ λ · λ
G λ λ λ ·

- Diagonal entry −qaa is the substitution rate of
nucleotide a, here qaa = −3λ.
- Non-diagonal entry qab is the substitution rate
of nucleotide a by b, here qab = λ.

Time Axis

Initial SequenceA T C G G

δ

δ

δ
δ

δ-marks distributed according to a Poisson process with rate 4λ. The
nucleotide is substituted by a with probability 1/4.
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Stochastic nucleotidic substitution models

Consequences

- Convergence in distribution at any site

- Convergenge in distribution of the whole sequence to the product
measure.

Problems

- (a1 . . . a`)obs 6= (a1)obs . . . (a`)obs.

- The substitution rate η(x)→ a may depend on η(x − 1), η(x) and
η(x + 1).

Famous example : CpG dinucleotides

- Rate C → T up to ten times larger when C is involved in a CpG (in fact
C?pG).
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JC+CpG model
Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- A DNA sequence η is now doubly infinite, that is, an element of
{A,T,C,G}Z.
- Keep Jukes and Cantor model

A T C G
A · 1 1 1
T 1 · 1 1
C 1 1 · 1
G 1 1 1 ·

- Superimpose "double" substitution mechanism

CpG

TpG

CpA

r

r
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Construction with marked Poisson point
processes

Time Axis

Initial SequenceA T C G G

δ

δ

δ

δ

δ

RT

RART

Mark at x Rate Action: η(x) moves to a . . .
δ 1 . . . with probability 1/4.

Ra r . . . if η(x , x + 1) =CG and a =T
or if η(x − 1, x) =CG and a =A.
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Properties

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- There exists a unique Markov process on A Z with the transition
rates defined before.

- The process is ergodic, its unique invariant probability measure π on A Z

is translation invariant and ergodic with respect to the translations on
Z.
- Any collections (ηx)x∈I and (ηy )y∈J are independent as soon as
dist(I , J) > 3.
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Simulate the evolution of a finite DNA
sequence

|

1 N

|

Add two
artificial sites

|

1 N

|× ×

Transform the linear se-
quence into a circular one

××| |
1 N

Run the
evolution

process with
marked Ppp’s

and remove
the two

artificial sites

|

1 N

|
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Substitution processes
- Only one coordinate changes in each transition.

- The transition mechanism is specified by a non-negative function c
defined on Z×A × X , with A a finite alphabet and X = A Z.

- We assume that, for any fixed site x and target a, the function c(x , a, ·)
depends on η ∈ X only through a finite set Sa

x ⊂ Z depending on x and a.

Sufficient conditions for its existence

K = sup{c(x , a, η) : x ∈ Z, a ∈ A , η ∈ X} <∞ (1)
and s = sup{|Sa

x | : x ∈ Z, a ∈ A } <∞. (2)

Example: JC+CpG

SA
x = {x − 1, x} and c(x ,A, η) =

{
1+ r if η(x − 1, x) = CG ,
1 else,

ST
x = {x , x + 1} and c(x ,T , η) =

{
1+ r if η(x , x + 1) = CG ,
1 else,

SC
x = ∅ and c(x ,C , η) = 1,

SG
x = ∅ and c(x ,G , η) = 1.
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Example of single ‘cut-and-paste’

A T C G C T
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‘Cut-and-paste’ process

- The transition mechanisms are circular permutations of finitely many
sites of Z and are specified by a transition probability matrix p on
Z× Z and a cut rate per site ρ > 0.

- The value ρ · p(x , y) represents the rate at which the coordinate η(x) is
transfered to site y . We assume that p is translation invariant on Z.

η(x) η(x + 1) η(y − 1) η(y)

Sufficient condition for its existence:
∑
|x |p(0, x) <∞
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Construction with marked Poisson point
processes

Axe du
temps

A T C G G

(�, 1, 4) (�, 1, 4) (�, 1, 4) (�, 1, 4)

(�, 5, 3) (�, 5, 3) (�, 5, 3)

- Mark (�, x , y) distributed at rate ρ · p(x , y). If x < y , the contents of
sites x , x + 1, . . . , y are right circularly permuted. If x > y , the contents
of sites y , y + 1, . . . , x are left circularly permuted.
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Ergodicity for independent evolution models
with ‘cut-and-paste’

Theorem (Falconnet, Gantert and Saada)

Assume that the substitution rates are independent and are ruled by an
irreducible Q-matrix. Then the process is ergodic and the invariant
measure is the product measure on Z.
- Especially, for any usual substitution model (JC69, K80, T92, etc.) and
any ‘cut-and-paste’ mechanism invariant by translation, the dynamic of
the process is ergodic.
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Ergodicity for substitution processes with
‘cut-and-paste’ mechanism

Theorem (Falconnet, Gantert and Saada)

Define
m = inf{c(x , a, η) : x ∈ Z, a ∈ A , η ∈ X},
K = sup{c(x , a, η) : x ∈ Z, a ∈ A , η ∈ X},
s = maxx∈Z,a∈A |Sa

x |.
(3)

Assume that

m > 0 and (s − 1)(K −m) < |A |m.

Then, for any ρ > 0, the superimposition of a substitution process and a
‘cut-and-paste’ mechanism is exponentially ergodic.

Especially, the JC+CpG+‘cut-and-paste’ model is ergodic as soon as

r < 4λ.

Method : construction of a generalized dual process. Inspired from
Ferrari, Annals of probability (1990).
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Introduction of a marked branching
structure

Time
axis

1 2 3 4

Ra
2

δ

δ

(1,3) (1,3) (1,3)

(4,3) (4,3)

When we go back in time and the dual process meets

- a δ-mark at site x , the branch dies;

- a Ra-mark at site x , the branch dies and is replaced by 2 new branches.

- a (x , y)-mark, the involved branches are circularly permuted.
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Central idea

- When we go back in time and the dual process meets a δ-mark at site x ,
it is not necessary to go further to know the value of η(x), because it is
determined at that point by an independent random variable.

- Conditions are obtained by coupling with a dying branching process.
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