Modelling DNA sequence evolution with interacting particle systems

M. Falconnet¹ N. Gantert² E.Saada³

¹Université d'Évry Val d'Essonne, CNRS – France

²Technische Universität München – Germany

³CNRS, Paris Descartes – France

Stochastic Models in Ecology, Evolution and Genetics, Angers, 9-13th December 2013

1 Nucleotidic substitution processes

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

2 Extension

- Adding 'cut-and-paste' mechanism
- Results
- How to use the dual process

Nucleotidic substitution processes

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

2 Extension

- Adding 'cut-and-paste' mechanism
- Results
- How to use the dual process

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

- A DNA sequence η is an element of $\{A, T, C, G\}^N$, $N \in \mathbb{N}^*$.
- Independent evolution of the sites according to a Markovian kernel.

Example: Jukes and Cantor model (1969)

Extension

Stochastic nucleotidic substitution models

Consequences

- Convergence in distribution at any site
- Convergenge in distribution of the whole sequence to the **product measure**.

Problems

- $(a_1 \dots a_\ell)_{\mathrm{obs}} \neq (a_1)_{\mathrm{obs}} \dots (a_\ell)_{\mathrm{obs}}.$
- The substitution rate $\eta(x) \rightarrow a$ may **depend** on $\eta(x-1)$, $\eta(x)$ and $\eta(x+1)$.

Famous example : CpG dinucleotides

- Rate $C \to T$ up to ten times larger when C is involved in a CpG (in fact $C^\star pG).$

JC+CpG model

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- A DNA sequence η is now doubly infinite, that is, an element of $\{\mathsf{A},\mathsf{T},\mathsf{C},\mathsf{G}\}^{\mathbb{Z}}.$
- Keep Jukes and Cantor model

	A	Т	С	G
А	•	1	1	1
Т	1	•	1	1
С	1	1	•	1
G	1	1	1	

- Superimpose "double" substitution mechanism

Properties

Bérard, Gouéré et Piau, Mathematical Biosciences (2008)

- There exists a unique Markov process on $\mathscr{A}^{\mathbb{Z}}$ with the transition rates defined before.

- The process is **ergodic**, its unique invariant probability measure π on $\mathscr{A}^{\mathbb{Z}}$ is **translation invariant** and **ergodic** with respect to the translations on \mathbb{Z} .

- Any collections $(\eta_x)_{x \in I}$ and $(\eta_y)_{y \in J}$ are **independent** as soon as $dist(I, J) \ge 3$.

Simulate the evolution of a finite DNA sequence

Nucleotidic substitution processes

- The origins: Jukes and Cantor model
- Entering the field of interacting particle systems
- Model properties

2 Extension

- Adding 'cut-and-paste' mechanism
- Results
- How to use the dual process

Substitution processes

- Only one coordinate changes in each transition.
- The transition mechanism is specified by a non-negative function c defined on $\mathbb{Z} \times \mathscr{A} \times X$, with \mathscr{A} a finite alphabet and $X = \mathscr{A}^{\mathbb{Z}}$.
- We assume that, for any fixed site x and target a, the function $c(x, a, \cdot)$ depends on $\eta \in X$ only through a finite set $S_x^a \subset \mathbb{Z}$ depending on x and a.

Sufficient conditions for its existence

$$K = \sup\{c(x, a, \eta) : x \in \mathbb{Z}, a \in \mathscr{A}, \eta \in X\} < \infty$$
(1)

and
$$s = \sup\{|S_x^a| : x \in \mathbb{Z}, a \in \mathscr{A}\} < \infty.$$
 (2)

Example: JC+CpG

$$S_x^A = \{x - 1, x\} \text{ and } c(x, A, \eta) = \begin{cases} 1 + r & \text{if } \eta(x - 1, x) = CG, \\ 1 & \text{else,} \end{cases}$$
$$S_x^T = \{x, x + 1\} \text{ and } c(x, T, \eta) = \begin{cases} 1 + r & \text{if } \eta(x, x + 1) = CG, \\ 1 & \text{else,} \end{cases}$$
$$S_x^C = \emptyset \text{ and } c(x, C, \eta) = 1,$$
$$S_x^G = \emptyset \text{ and } c(x, G, \eta) = 1.\end{cases}$$

Extension

Extension

'Cut-and-paste' process

- The transition mechanisms are circular permutations of finitely many sites of \mathbb{Z} and are specified by a transition probability matrix p on $\mathbb{Z} \times \mathbb{Z}$ and a cut rate per site $\rho \ge 0$.

- The value $\rho \cdot p(x, y)$ represents the rate at which the coordinate $\eta(x)$ is transferred to site y. We assume that p is translation invariant on \mathbb{Z} .

Sufficient condition for its existence: $\sum |x|p(0,x) < \infty$

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright , x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites x, x + 1, ..., y are right circularly permuted. If x > y, the contents of sites y, y + 1, ..., x are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

- Mark (\circlearrowright, x, y) distributed at rate $\rho \cdot p(x, y)$. If x < y, the contents of sites $x, x + 1, \ldots, y$ are right circularly permuted. If x > y, the contents of sites $y, y + 1, \ldots, x$ are left circularly permuted.

Ergodicity for independent evolution models with 'cut-and-paste'

Theorem (Falconnet, Gantert and Saada)

Assume that the substitution rates are **independent** and are ruled by an irreducible Q-matrix. Then the process is **ergodic** and the invariant measure is the product measure on \mathbb{Z} .

- Especially, for any usual substitution model (JC69, K80, T92, etc.) and any 'cut-and-paste' mechanism invariant by translation, the dynamic of the process is ergodic.

Ergodicity for substitution processes with 'cut-and-paste' mechanism

Theorem (Falconnet, Gantert and Saada)

Define

$$m = \inf\{c(x, a, \eta) : x \in \mathbb{Z}, a \in \mathscr{A}, \eta \in X\},\$$

$$K = \sup\{c(x, a, \eta) : x \in \mathbb{Z}, a \in \mathscr{A}, \eta \in X\},\$$

$$s = \max_{x \in \mathbb{Z}, a \in \mathscr{A}} |S_x^a|.$$
(3)

Assume that

$$m > 0$$
 and $(s-1)(K-m) < |\mathscr{A}|m$.

Then, for any $\rho \ge 0$, the superimposition of a substitution process and a 'cut-and-paste' mechanism is **exponentially ergodic**.

Especially, the JC+CpG+'cut-and-paste' model is ergodic as soon as

$$r < 4\lambda$$
.

Method : construction of a generalized dual process. Inspired from Ferrari, Annals of probability (1990).

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

- a δ -mark at site x, the branch **dies**;
- a \mathscr{R}^{a} -mark at site x, the branch dies and is replaced by 2 new branches.
- a (x, y)-mark, the involved branches are circularly permuted.

Central idea

- When we go back in time and the dual process meets a δ -mark at site x, it is not necessary to go further to know the value of $\eta(x)$, because it is determined at that point by an independent random variable.
- Conditions are obtained by coupling with a dying branching process.

Extension

Literature

J. Bérard, J.-B. Gouéré, and D. Piau.

Solvable models of neighbor-dependent nucleotide substitution processes. *Mathematical Biosciences*, 211:56–88, 2008.

P. A. Ferrari.

Ergodicity for spin systems with stirrings. *The Annals of Probability*, 18(4):1523–1538, 1990.

T. H. Jukes and C. R. Cantor.

Mammalian protein metabolism, chapter Evolution of Protein Molecules, pages 21–132. Academic Press, New York, 1969.

T. M. Liggett.

Interacting Particle System, volume 276 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, 1985.