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Evolutionary dynamics of a population of Ω identical individuals:

•  selective pressure (fitness)

•  random reproduction (death/reproduction, binomial sampling, ...)

•  mutations

Simplifying assumptions: 

• haploid individuals 

• two competing alleles {A,B}

• no mutation

Microscopic dynamics: Wright-Fisher and Moran models.



Balancing selection is an umbrella concept:

a class of selective processes by means of which multiple alleles are 
maintained at significant frequencies in a population.  

Examples: self-incompatibility systems in plants, Major Histocompatibility 
Complex in mammalian, certain genetic diseases in humans (sickle-cell 
anemia, thalassemia, cystic fibrosis)

In the two alleles model (Robertson, 1962): 

•   favors an internal mixed equilibrium 

•   induces retardation in fixation in well-mixed populations.



Migration will be homogeneous (mij = m, ∀(i,j)) and conservative.

Study:   1) fixation properties (Ω < ∞, N < ∞), 

             2) phase transitions (Ω < ∞, N = ∞) 

no structure 
(“mean-field”)

complex structures spatial structures
(diffusion effects) 

Subdivision: N subpopulations (demes/colonies) of Ω individuals each, 
interacting by means of migration.



1. Mean-Fixation Time in unstructured subdivided 
populations with balancing selection. 

In collaboration with: P. Lombardo, SISSA-Trieste (Italy)
A. Gambassi, SISSA-Trieste (Italy)

See: P. Lombardo,  A. Gambassi, and L. Dall’Asta, arXiv:1310.5072 (2013)



1) High-migration limit:            

2) Low-migration limit (Slatkin, 1981):
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Known results on the mean-fixation time (MFT):



Diffusion approximation for the Island Model with balancing selection

For Ω ≫ 1, the frequency xi = ΩA(i)/Ω of allele A in deme i satisfies the 
Langevin equation:

h⌘i(t)⌘j(t0)i = �i,j�(t � t0)

Itô gaussian noise
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Diffusion approximation for the Island Model with balancing selection

For Ω ≫ 1, the frequency xi = ΩA(i)/Ω of allele A in deme i satisfies the 
Langevin equation:
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Consider the average quantities                                
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We need a moment-closure scheme!
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For s = 0 and large N,       is a much slower variable than local frequencies xi :

1)  the {xi} can be considered as almost independent random variables, 
     each one described by the same conditional “quasi-stationary” distribution 

x =
Z 1

0
dxxPqs(x|x)

x

Pqs(xi

|x) / x

2m⌦x̄�1(1� x)2m⌦(1�x̄)�1

that satisfies    

Cherry and Wakeley (2003) and Cherry (2003):



2)   we can approximate         with                as function of   x
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The subdivided population behaves like a well-mixed one with 

• effective population size

• effective selection coefficient   se = s/
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Issues: When does the approximation hold? Can be improved?

Tmigr ' 1/mTimescales:     - migration
  
                        - relaxation

                        - fluctuations

Trel ' 1/M [x] ' 1/se

Tfluct ' 1/V [x̄] ' Ne

The approximation is correct when Tmigr ⌧ min{Tfluct, Trel}.

•  when  NΩs > 1 + 1/mΩ,   it requires

•  otherwise it only requires N ≫ 1

se/m⌧ 1



Generalization to small but non-vanishing values of se/m

1) Parametric ansatz:

2) Find      as function of       using the consistency conditiony x̄

x̄ =
Z 1

0
dxxPqs(x|y)

y = x̄� (se/m)x̄(1� x̄)(x⇤ � x̄) + O((se/m)2)

3) Calculate corrections to M [x̄], V [x̄]

Pqs(x|y) / x

2m⌦y�1(1� x)2m⌦(1�y)�1es⌦x(2x⇤�x)



Mean Fixation Time

Using the backward Fokker-Planck approach (Kimura and Ohta, 1969)
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Biodiversity

1) global heterozygosity

2) local heterozygosity

H = 2x̄(1� x̄)

h = (2/N)
P

i xi(1� xi) h 2 [0, H]

H 2 [0, 1/2]

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

t

x i

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

t

x i

H ' 1

2
, h ' 0 H ' h ' 1

2



Biodiversity

H(t) ' HmetPsurv(t)
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Consistent with results for models with many alleles and mutation
(Schierup 1998, Schierup et al. 2000, Muirhead 2001, Nishino and Tajima 2005)



2. Fixation-Coexistence phase transition in 1d 
populations with balancing selection. 

In collaboration with: F. Caccioli, Univ. of Cambridge (UK)
D. Beghè, University of Parma (Italy)

See: L. Dall’Asta, F. Caccioli and D. Beghè, Europhys. Lett. 101, 18003 (2013)



Consider an infinite one-dimensional stepping-stone model:

m m m mm

xi = sxi(1� xi)(x⇤ � xi) + m(xi+1 + xi�1 � 2xi) +

r
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but we cannot use previous approximations... 

Numerical simulations suggest a phase-
transition at finite values of balancing selection s
(Korolev and Nelson, 2011)



We consider a one-dimensional voter-like model Si ∈ {-1,1} 
with heterozygosity advantage (Sturm and Swart, Ann. App. Prob.18, 2008)

The model: 
•  with rate     , each individual is replaced by a new one equal to a 
   randomly selected neighbor (voter-like process);

•  with rate         , each individual i is replaced by the less frequent 
   type in the triplet {Si, Si+1, Si+2}(and the same for the symmetric case) 

�0

�b/2

Similar to the celebrated Neuhauser-Pacala model of spatial plant ecology. 
(C. Neuhauser and S. Pacala, Ann. Appl. Prob. 9,1999)

A spin model of balancing selection



From the master equation for the distribution P(S1,..,SN;t), we get a 
hierarchy of coupled equations for multispin correlation functions.

dhSii
dt

=
�0

2
[hSi�1i + hSi+1i � 2hSii]

+
�b

2
[hSiSi�1Si�2i + hSiSi+1Si+2i � 2hSii]

dhSiSi+1i
dt

=
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2
[hSiSi+2i + 2 + hSi�1Si+1i � 4hSiSi+1i]

+
�b

2
[hSi�2Si�1SiSi+1i + hSiSi+2i

+hSi�1Si+1i + hSiSi+1Si+2Si+3i � 4hSiSi+1i]

we close the equations using (Kirkwood) factorization approximation:

hSiSi+1Si+2i ⇡ hSiihSi+1Si+2i
hSiSjSi±1Si±2i ⇡ hSiSjihSi±1Si±2i



We get equations for two point correlations ck(t) = hSiSi+1+ki

ċ0(t) = �0(c1 + 1� 2c0) + �b(c2
0 + c1 � 2c0)

ċ1(t) = �0(c2 + c0 � 2c1) + �b(c1c0 + c0 � 2c1)
ċk(t) = �0(ck+1 + ck�1 � 2ck) + 2�b(c0 � 1)ck,

The approximation is correct only if we define a separation of scales 
between the local dynamics and the large-scale behavior.

At large times:
 

1) we assume c1 ≃ c0 , 

2) we solve the equation for c0

3) use the solution to solve the equation for ck



We find:
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Dynamics in the Fixation Phase: H(0, t) / (4�0t)
�1/2

for t!1
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Genetic demixing through algebraic coarsening (as for neutral populations)



Exponential relaxation to the stationary spatial profile of heterozygosity
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Balancing selection could favor the propagation of polymorphism in a 
completely homogenous environment (Fisher-like waves)

tt

�b/�0 = 1.05 �b/�0 = 1.5

Dynamics in the Coexistence Phase:



Balancing selection could favor the propagation of polymorphism in a 
completely homogenous environment (Fisher-like waves)

Dynamics in the Coexistence Phase:

ballistic propagation velocity is linear with �b � �0
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Conclusions

We studied the effects of balancing selection in subdivided populations

1) MFT in unstructured populations is a non-monotonic function 
    of the migration rate 

2) coexistence-fixation phase transition in 1d populations

    Both phenomena should be very general (other dynamics with an
    internal attractive equilibrium with two symmetric absorbing states)

Future works:

•  Populations on networked structures.

•  Range expansion.



Microscopic Model Simulations

wA = 1 + s̃, wB = 1

pr(x) =
wA⌦A
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