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A model too complex to use

e e Full specification of ances-
M try is the ancestral recombi-
ccfers B nation graph or ARG: Figure
. ——— due to Chaozhi Zheng.

e MCMC sampling of the
ARG (Kuhner et al.) or
of its sequential Markov ap-
proximations, (Zheng et al.)
is hard (even for 100 kbp).
e Main problem: Our inter-
est is in long lengths (> 1
Mbp) and short time depths
< 50 generations. Most of
the ARG is irrelevant.
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Genetic variation, Association, and Descent

e T here is a large amount of variation in our genomes: at about
1 in 1000 bp, there will be two different possible alleles (a and b).
These are SNPs; single nucleotide polymorphisms.

e The data are genetic marker (SNP) data X at known locations in
the genome, and trait data Y (qualitative or quantitative).

e [ he goal is to find where in the genome are there DNA variants
that affect the trait values Y.

e Direct testing for an association between Y and allelic type X at
each SNP location ignores the fact that DNA descends in blocks.

e Also ignores the fact that functional genes are blocks of DNA
and is confounded by allelic heterogeneity: many ways to mess up
a local block of DNA that is a functional gene.

e Instead consider association in descent of X and Y:
DNA is identical by descent (ibd) if it is a copy of the same DNA
in @ common ancestor.



Relatedness is the source of allelic association

e A new causal mutation, o, arises.
e Associations of interest come
from descent of small chromosome
segments over many generations.
e [ he association is maintained by
genetic linkage.

Q000000
| N N NoN N N J

e Associations also arise from de-
mographic history and random ge-
netic drift, resulting in differing al-
lele frequencies among population
subdivisions.

e Both are forms of relatedness; the first can signal a causal location.

e Idea of /bd-based mapping is to detect excess location-specific
relatedness (identity by descent, ibd) Z at test locations, among
individuals of similar phenotype.



Case-control study: Excess relatedness among cases

e In association tests, we compare frequency of an allele in N1 cases
vs N»> controls, at dense test SNP locations across the genome:

1 1
<2N >, Xi — oNA > Xi)
1 cases 2 cont.
where X; = 0,1,2 is number of alleles of specified type in 1.

e In /bd test, we compare the frequency of /bd between M4 case-case
pairs and M-> case-(non-case) or (non-case)-(non-case) pairs:
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M4 — Mo
case-case other

where Z; = 1 or 0 as pair does/does not share genome by descent
at test location.

e [0 adjust for population heterogeneity or structure, adjust for the
genome-wide average in each group.

e Assess significance by permutation of case-control labels.
(No distributional assumptions.)



Simulation Study: is there enough power?

e Study by Sharon Browning.

e Long population evolutionary simulation at Ne = 104 with mu-
tation, selection and recombination. Then run forward at larger
population (Ne = 105) for G = 25 generations.
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e Each simulation is a 200kb region, with central 10kb containing
also causal SNPs arising in the population simulation.

e Retain 100 common SNPs; best in alternating 1kb blocks.
These are used for association mapping.

e Individuals with > 1 causal variant alleles in the 5 central 1kb
blocks are cases with prob 0.1

e Note the ibd (location-specific relatedness), Z, is assumed known.
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Results of the simulation study

e Results from Browning and Thompson, Genetics, April 2012.

e Properties of simulated causal variants.

selec  # var. var.freq. total freq. max assoc R2
-tion of var-hap. w/marker SNP
0.0005 11-16 0.00015-0.0060 0.045-0.13 0.91-1.00
0.001 9-14 0.00010-0.0031 0.019-0.050 0.28-1.00

0.002 3-13 0.00010-0.0020 0.0097-0.031 0.06-0.52
0.005 7-10 0.000088-0.001 0.0045-0.011 0.03-0.16

e Power of tests in large population: Ne = 10° for 25 generations.

selec # cases= power power association
-tion # controls assoc. ibd VvS. ibd
0.0005 500 0.87 0.57 assocC.
0.001 500 0.65 0.53 Not-Sig
0.002 1000 0.53 0.87 ibd

0.005 3000 0.47 0.90 ibd




Mendelian segregation: Identity by descent

e Mendel’s first law (1866); Each individual has two genome copies;

one maternal, one paternal. At every location, to each offspring

independently, a parent copies a random one of his/her two copies.

e DNA is identical by descent (ibd) if it is a copy of the same DNA

in @ common ancestor.

@o| (oo e DNA that is ibd is (with
high probability) the same allelic
type, whereas non-ibd DNA is of

e o) (@0) |00 independent allelic type.

e Whether or not pedigree rela-

tionships are known, ibd under-

lies patterns of phenotypic simi-
larity among relatives.

E (®e® C (@0 oco(D

These ibd: @ Also these: O
But not to each other.

e In a pedigree: ibd relative to the founders may be inferred
given marker data X and pedigree prior.

In a population: ibd at a locus may be inferred from local
marker data haplotypes X (e.g. e and »).



Given ibd, we know all there is to know
= =O=0
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E (e@ C|eo| |oo|D o o o | Prob
These ibd: @ Also these: © b a a b ngg h
But not to each other.
e For example: b a — b qug? | 1-h

Pr(E = ab, C = aa, D = ab)
o Or Pr(YE7YC7YD) = D el.e (Pr(YE|'7.)Q(‘)Q(.)
> (Pr(Ygle, «)q() Xo(Pr(Yple,0)q(0)))

e Given ibd, the pedigree is no longer relevant.
The ibd may come from a pedigree or population inference.
A population probability model is needed to provide h.



Multiple ibd among closely related individuals

13,14 9,15 1,2 3,4

FGL = founder genome label.

Pedigree irrelevant once /ibd is known.

e Edges are observed individuals; nodes represent ibd genome.
For example: G, D, and F carry FGL “4":. B,J,E and D carry “13".

e T he /bd state at a locus is a partition of the gametes of observed
individuals: ({Ap},{Am, Bm,Jm,Gp},{Gm, Dm, Fm},{Cp,Cm, Ep, Hp},
{Bp, Jp, Dp, Em},{Hm, Fp},{Kp},{Km,Up, Wp}, {Um, Vp},{Wm,Vm}).
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Trait-related ibd in population samples

e In a population, ibd levels may be lower, and partitions simpler,
but trait-related /ibd can still indicate causal locations.

e Edges are individuals observed for a trait. Two edges sharing a
node indicate /ibd of those individuals at that locus.

(a)
JALA LU
A oA A/NA  AVA  A/\A e Trait data may be
@ @ @ ' .
U o U o U A (a) qualitative, or
(b) quantitative.
(b)

o237 4 Individuals not
o
63 51 42/\58 54\ A7 46/\48 _ _
——eo——o 2 3 showing any /bd are
o2l g 24y 2.8 ' omitted.

e In regions of the genome with causal DNA, we should detect a
clustering of /bd associated with trait similarity.

e Assess significance by permutation of trait values.
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Inheritance of chromosome segments

TWO PARENTAL

CHROMOSOMES

2lociclose || W I B 5 POSSIBLE
together OFFSPRING
giveshighproo- | | | N B

CHROMOSOMES

of deriving from

/

same parental chromosome

e Each mat/pat genome of
3 x 109 bp (~ 3,000 Mbp)
IS packaged into 22
chromosomes sized from
51 to 245 Mbp.

e Chromosomes are inherited
in large chunks, ~ 108bp or
100 Mbp.

e In any meiosis, crossovers
occur as a Poisson process
along the chromosome, rate 1
per 108 bp.

e Over m meioses, collectively
Crossovers occur as a Poisson
process, rate m per 108 bp.

e [ he distance to the next
crossover is exponential with
mean 108 /m bp.

e EXxponential distributions
have standard deviation equal
to the mean.
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ibd in remote relatives; (K. P. Donnelly, 1983)

Relatives separated

by m meioses.

Pr(2 kids get same)
=1/2

Pr(descendants share)
=2 x (1/2)™

Pr(share any genome length L (108bp))
=1—exp(—(m—1)L/2m"1)

0.0

-1.0

1 POINTWIS

Log10 prob sharing

-2.0

-3.0

5

10

15 20

Meioses apart

Length of ibd segment ~ m~1 x 108 bp.

m =12 m = 20
ibd at point 0.0005 2x10°°
any ibd (L = 30) 0.148 0.001
length ibd segment | 8.5 Mbp 5 Mbp

e /bd segments are rare but not short. The human genome is slgort.



Detecting ibd among individuals in populations

e For model-based inference of ibd Z from SNP data X:
—need a model for the process of ibd Z along the chromosome,
—need a model for the SNP data X given Z.

e Each SNP alone gives almost no information, but /bd comes in
segments, with more and larger segments in closer relatives.

e DNA chunks that are ibd from a recent common ancestor are the
same allelic type for the SNPs in the chunk (with high probability).

DNA that is not ibd will be of “independent” allelic type—
basically, there will be differences at many SNPs.

e For model-based inference of /ibd, use common variation!

Models require allele and/or haplotype frequencies;

Only for common SNPs can we have good estimates of the relevant
population allele and local haplotype frequencies.
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Realizing ibd segments from X in populations

e Two-haplotype model (Leutenegger et al. 2003)

allele-1 p p p_p p-p

ibd 0/1

allele-2 b b b b b b

e [T wo-parameter Markov model: marginal prob g, rate change «.
In reality, ibd is not Markov and expected segment length depends
on # meioses to the common ancestor.

e /bd = same allele; non-ibd = independent alleles.
Allow error so different alleles can still be ibd.

e Given a model, a standard HMM forward-backward algorithm gives
realizations of ibd {Z(j);j = 1,...,4} given X, jointly over j,
where X are allele types on the chromosomes over all loci.
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Model for pointwise ibd among multiple gametes

e Ewens’ sampling formula (ESF; Ewens, 1971) was originally de-
veoped to model allelic variation, but provides a one-parameter
model for the partition of any n exchangeable objects.

e Each partition Z of n gametes into k = |Z| ibd groups v

() 0zl
Fn o) vng(IvI — 1)!

wn(Z) =

o If |Z| =k and Z has a; groups of size j
r(6) o
F(n+ 0)
with k = DA, M=) ;7a;.

e Note for two gametes b and ¢, the probability of 1 group size 2 is

r(Z={bec}) = — (2-1H = — _ = 8

0(1+6) (1+6)
is the probability of ibd between two gametes.

T (Z)

[1(G —1)H%

J
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The Chinese restaurant process for building the ESF

e Tavaré and Ewens, 1997.

e GGiven a state with n people, at k tables, with a; tables at which
there are 53 people.

— New person sits at an empty table with probability « (1 — 3),
and to join each group of size 53 with prob. «x j8.

° kzzjaj, nzzjjaj.

e Example: New gamete g added to
Z = (a,c, f),(b,e),(d) ~ mg(-) which has k=3, a3 =a» = a1 = 1:

g joins probability new state Z* state character

(a’acaf) 36/(14_55) (a,c,f,g),(b,e),(d) k:37a’4:a’2:a’1 =1
(b, e) 28/(1+ 50) (a,c, f),(b,e,g),(d) k=3, a3=2,a1=1
(d) B/(1+50) (a,c, ), (b,e),(d,g) k=3, ag=1ap =2
() @A-8)/14+58) (a,cf) (be)(d),(g) k=4,a3=ap=1a =2

If Z ~mg(-), then Z* ~ n7(-). (n changes from 6 to 7.)
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Changing ibd partitions across the chromosome

e Partition: ({Ap}, {Am, Bm, Jm,Gp},{Gm, Dm, Fm},{Cp, Cm, Ep, Hp},
{Bp, Jp, Dp, Em},{Hm, Fp},{Kp}, {Km,Up, Wp},{Um,Vp},{Wm,Vm}).

e Becomes:({Ap}, {Am, Bm, Jm, Gp},{Gm, Dm, F'm, Kp},{Cp, Cm, Ep, Hp},
{Bp, Jp, Dp, Em},{Hm, Fp},{Km,Up, Wp}, {Um, Vp}, {Wm,Vm}).

e Becomes:({Ap}, {Am, Bm, Gp},{Gm, Dm, Fm, Kp},{Cp, Cm, Ep, Hp},
{Bp, Jp, Dp, Em}? {‘]m}a {Hm, Fp}, {Km, Up, Wp}7 {Um, Vp}a {Wma Vm})

e Recombination events in the ancestry of the gametes will move
them among elements of the partition — we need a model for this
process.
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ibd partitions at a locus: the coalescent ARG

e [ he coalescent traces co-ancestry of chromosomes at a particular
locus, back to the most recent common ancestor (MRCA).

e /bd Is always relative. Relative to time ¢t generations ago;
Z = ((a,c, f)(b,e)(d)). Changing ¢, changes Z.
Pairwise ibd probability 38 is surrogate for t.

e Along a chromosome, the coalescent changes due to recombina-
tion events, and we have the ancestral recombination graph (ARG).

For example:

r1: ((b,e),(d)) < ((b), (e,d))

e If chromosomes share a

t
\
r2 recombination breakpoint,
changes may involve > 1 chrom.
>\ rk For example:
r2: ,C, ), (d)) < , (c, f,d
A ((a, ¢, ), (D) + (@), (e, £, d))

e d

e But ARG model is too complex for genome-wide use.
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Model for changing ibd among multiple gametes

e Modified CRP due to Chaozhi Zheng, allows any 1 gamete to
move from one ibd subset to another, and has ESF as equil. dsn.

e Potential changes in ibd occur at some rate o per Mbp along the
chromosome, a normalized recombination rate p.

e At a potential change point:

— First, an extra gamete, * is proposed as a singleton with prob.
x (1 — /), and to join each group of size 5 with prob. < jg8.

— Next, one of the n 4+ 1 gametes is selected for deletion, and, if
not deleted, * is given the identity of the deleted gamete.

e Examples only, (each “dies” prob 1/7):
* joins probability interim state dies new Z*

(a’7c7f) 3/3/(1+5/B) (a’7c7f7*)7(b7e)7(d) d (G,C,d,f),(b,e)
(b, €) 28/(1+58) (a,c, f),(be,*),(d) b (a,c[f),(be),(d)
(d) B/(1+58) (a,c, f),(be),(d,*) e (a,c[f),(b), (d,e)
() @A-=8)/A4+58) (acf[f)(be)(d),(*) * (acf) (be),(d)
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A note about models

e In pedigrees and in populations, Mendelian segregation and the
Ccrossover processes along a chromosome are real.

Pedigrees

Populations

Model

Mendelian segregation
and Ccrossover process

Ewens sampling formula
Or coalescent

Prior for inferring Yes Yes
ibd from X (if correct)
Null distribution Yes NO

for Z

(if correct)

e In pedigrees, we can base both ibd realizations and null distribution
directly on this highly informative prior.

e In populations, the models based on ESF provides a good prior
for realizations of ibd given X — because the data dominate.

e The model is only a (flexible) prior; can be made more flexible
e.g. by including a component allowing a transition to a realization
from m,(Z) independent of current state with small probability §.
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Realizing ibd partitions among multiple gametes

e \We want joint inference, but for more than 6 gametes, the HMM
is impractical — the number of partitions (ibd states) gets huge.

e Two possible MCMC approaches (for haploid gametes) :
—Chaozhi Zheng — full Bayesian MCMC of parameters, transition
points and ibd transitions, given haplotype data.

—Chris Glazner — particle filter Monte Carlo approach.

e Another approach (due to Chris Glazner); (Results below).
Building the /bd state across a chromosome by adding diploid in-
dividuals successively to the ibd state, sampling from approximate
conditionals, constrained by current state:

Sample ibd among A, B, C: first sample (Z(A, B)| X4, Xpg), then
(Z(B,C)|Z(A,B),Xp, X), then (Z(A,C)|Z(B,C),Z(A,B), X 4, X¢).
Likelihood is “Product of approximate conditionals’

e Using Markov models for latent ibd, with marker data X dependent
on the latent ibd state, we can realize ibd Z among gametes of
individuals not known to be related.

22



An example of related individuals in a population

e Causal DNA descends from

magenta founder to the three
families.

e Quantitative trait is simulated

on green families, given geno-

types at the causal locus.

e Descent across the chromo-

some is simulated given descent

at the causal locus.

e SNP marker data are simu-

lated on the three families,

given each SNP marker location

descent.
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LOD score

LLod scores based on inferred ibd; No pedigree info!

e Results due to Chris Glazner.

—— True simulated IBD o Results
S - - - - Estimated from phased markers assessed
- - - Estimated from unphased markers by ability
: to recover
© linkage lod
score.
o e Information
. comes from
Trait locus
between
Lo
I | | | | family ibd
0 50 100 150 200

Position (cM)

e If data can be phased (i.e. we can identify the haplotypes that
make up the genotypes of the observed individuals) we can almost
perfectly recover the true-ibd curve.
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Summary:
Genetic analyses can be based on inferred ibd

e Modeling descent is important: ibd measures relevant location-
specific relatedness, whether in pedigrees or in populations

e Modeling genomes is important: our genomes are not 3 million
exchangeable SNPs. In terms of ibd segments, human genomes are
short.

e Models are important: Models do not mimic reality. Models pro-
vide a map to assess inferences and information.

e Models should be flexible:
— an unvalidated pedigree prior is not flexible.
— assuming no error in marker data is not flexible.

e In pedigrees and populations, modern SNP data, X enable realiza-
tions of ibd given X, but the source of the ibd inference is almost
irrelevant to analysis. (Pedigrees, if correct, provide a ‘“true null”.)

e Genetic analyses can be based on inferred ibd.
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