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A model too complex to use
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• Full specification of ances-

try is the ancestral recombi-

nation graph or ARG: Figure

due to Chaozhi Zheng.

• MCMC sampling of the

ARG (Kuhner et al.) or

of its sequential Markov ap-

proximations, (Zheng et al.)

is hard (even for 100 kbp).

• Main problem: Our inter-

est is in long lengths (> 1

Mbp) and short time depths

< 50 generations. Most of

the ARG is irrelevant.
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Genetic variation, Association, and Descent

• There is a large amount of variation in our genomes: at about
1 in 1000 bp, there will be two different possible alleles (a and b).
These are SNPs; single nucleotide polymorphisms.

• The data are genetic marker (SNP) data X at known locations in
the genome, and trait data Y (qualitative or quantitative).

• The goal is to find where in the genome are there DNA variants
that affect the trait values Y.

• Direct testing for an association between Y and allelic type X at
each SNP location ignores the fact that DNA descends in blocks.

• Also ignores the fact that functional genes are blocks of DNA
and is confounded by allelic heterogeneity: many ways to mess up
a local block of DNA that is a functional gene.

• Instead consider association in descent of X and Y:
DNA is identical by descent (ibd) if it is a copy of the same DNA
in a common ancestor.
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Relatedness is the source of allelic association

• A new causal mutation, o•, arises.

• Associations of interest come

from descent of small chromosome

segments over many generations.

• The association is maintained by

genetic linkage.

• Associations also arise from de-

mographic history and random ge-

netic drift, resulting in differing al-

lele frequencies among population

subdivisions.

high
lowlow
high

• Both are forms of relatedness; the first can signal a causal location.

• Idea of ibd-based mapping is to detect excess location-specific
relatedness (identity by descent, ibd) Z at test locations, among
individuals of similar phenotype.
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Case-control study: Excess relatedness among cases

• In association tests, we compare frequency of an allele in N1 cases
vs N2 controls, at dense test SNP locations across the genome: 1

2N1

∑
cases

Xi −
1

2N2

∑
cont.

Xi


where Xi = 0,1,2 is number of alleles of specified type in i.

• In ibd test, we compare the frequency of ibd between M1 case-case
pairs and M2 case-(non-case) or (non-case)-(non-case) pairs: 1

M1

∑
case-case

Zi −
1

M2

∑
other

Zi


where Zi = 1 or 0 as pair does/does not share genome by descent
at test location.

• To adjust for population heterogeneity or structure, adjust for the
genome-wide average in each group.

• Assess significance by permutation of case-control labels.
(No distributional assumptions.)

5



Simulation Study: is there enough power?

• Study by Sharon Browning.

• Long population evolutionary simulation at Ne = 104 with mu-

tation, selection and recombination. Then run forward at larger

population (Ne = 105) for G = 25 generations.

suitable. With N 10,000 and s = 0.0002, a majority of indi-
viduals carry a causal variant. Thus, the smallest selection
coefficient we consider is s = 0.0005, for which approxi-
mately 10–20% of individuals carry a causal variant, result-
ing in a prevalence of approximately 2–3% for the disease. If
the selection coefficient is very high, the causal variants will
tend to be very rare, and very large sample sizes are re-
quired to detect association, particularly with the SNP asso-
ciation test. The largest selection coefficient that we
consider is 0.005. For each selection coefficient we gener-
ated 100 independent data sets, which were used as base
populations for all the forward simulations described below.
Table 1 shows the distributions of frequencies of causal var-
iants and numbers of causal variants from the simulations.

After generating a base population with SFS_CODE, we
ran our own forward simulator for 25 or 100 generations
without selection or mutation or recombination, and with
a different population size corresponding to a recently
expanded population (Nrecent = 100,000) or a population
that has gone through a recent bottleneck (Nrecent =
1000). Omission of selection, mutation, and recombination
during this 25 or 100 generation time period is not signifi-
cant because of the short timescale. Our forward simulator
generated each new generation by sampling with replace-
ment from the existing pool of haplotypes. When there were
no causal variants segregating in the population after the
final generation, the sampling process was rerun.

The purpose of the final generations of simulation using
our own forward simulator was to determine IBD status.
Haplotypes deriving from the same ancestral haplotype G
generations ago (where G = 25 or G = 100) are considered
to be detectably IBD (see Appendix). Current methods for
IBD detection from SNP data can detect a majority of IBD

segments arising from a shared ancestor within the past 25
generations. With improving SNP data and further develop-
ments in IBD detection methodology, it may soon be possible
to detect IBD arising from shared ancestry 50 or even 100
generations ago.

In real data, ability to detect IBD depends on the number
of generations to the common ancestor only through the
length of the IBD segment. More recent common ancestry
tends to result in longer IBD segments, which are easier to
detect. However, the distribution of IBD lengths given the
number of generations to the common ancestor is highly
variable as it approximately follows an exponential distri-
bution. Using a cut-off in terms of number of generations to
common ancestor in place of a cut-off in terms of length of
region simplifies the simulation procedure and gives some
sense as to the properties of analysis of real data. When
comparing a threshold of G = 25 generations in simulated
data with a threshold of 2 cM in real data, say, on the one
hand some IBD segments due to common ancestry 25 gen-
erations ago will be too short to be detectable in real data,
while on the other hand some segments due to ancestry
more than 25 generations ago will be long enough to be
detected in real data, with these two effects cancelling each
other to some extent.

Cases and controls were generated by sampling with
replacement from the final generation until sufficient
numbers were obtained. The numbers of cases and controls
were chosen to achieve at least moderate power for both
SNP association and IBD tests. In many instances the
number of cases is much larger than would seem reasonable
given the effective population size. However, in real life the
actual population size is typically larger than the effective
population size. Also, many human populations have

Figure 1 Simulation scheme. Each sim-
ulated region is made up of 100 simu-
lated segments of length 1 kb with gaps
of length 1 kb between them. The cen-
tral five segments can contain causal
SNPs. Causal SNPs are those that the
simulation program designates as pro-
tein-changing mutations. These SNPs
have been subject to negative selection
at a specified rate. Only the causal SNPs
and one SNP per segment with

highest minor allele frequency (MAF) are retained. The causal SNPs are used to determine disease status, while the high MAF SNPs are tested in the
association analysis. IBD status is determined through further simulation, as described in the main text.

Table 1 Properties of simulated causal variants

s No. of variants Variant frequencies Haplotype carrier frequencies Max R2

0.0005 11–16 0.00015–0.0060 0.045–0.13 0.91–1.00
0.001 9–14 0.00010–0.0031 0.019–0.050 0.28–1.00
0.002 8–13 0.00010–0.0020 0.0097–0.031 0.06–0.52
0.005 7–10 0.000088–0.0011 0.0045–0.011 0.03–0.16

Interquartile ranges (IQR; lower quartile to upper quartile) from the 100 simulations with selection coefficient s are shown for several quantities of interest. The second
column gives the number of causal variants per simulation. The third column gives the frequencies of the causal variants. The fourth column gives the proportion of
haplotypes that carry a causal variant. The final column gives the maximum squared correlation coefficient between any one of the 100 common variants tested in the
association test with any one of the causal variants. All results are from the base simulation population of 10,000 individuals.
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• Each simulation is a 200kb region, with central 10kb containing

also causal SNPs arising in the population simulation.

• Retain 100 common SNPs; best in alternating 1kb blocks.

These are used for association mapping.

• Individuals with ≥ 1 causal variant alleles in the 5 central 1kb

blocks are cases with prob 0.1

• Note the ibd (location-specific relatedness), Z, is assumed known.
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Results of the simulation study

• Results from Browning and Thompson, Genetics, April 2012.

• Properties of simulated causal variants.

selec # var. var.freq. total freq. max assoc R2

-tion of var-hap. w/marker SNP
0.0005 11-16 0.00015-0.0060 0.045-0.13 0.91-1.00
0.001 9-14 0.00010-0.0031 0.019-0.050 0.28-1.00
0.002 8-13 0.00010-0.0020 0.0097-0.031 0.06-0.52
0.005 7-10 0.000088-0.001 0.0045-0.011 0.03-0.16

• Power of tests in large population: Ne = 105 for 25 generations.

selec # cases= power power association
-tion # controls assoc. ibd vs. ibd

0.0005 500 0.87 0.57 assoc.
0.001 500 0.65 0.53 Not-Sig
0.002 1000 0.53 0.87 ibd
0.005 3000 0.47 0.90 ibd
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Mendelian segregation: Identity by descent
• Mendel’s first law (1866); Each individual has two genome copies;
one maternal, one paternal. At every location, to each offspring
independently, a parent copies a random one of his/her two copies.
• DNA is identical by descent (ibd) if it is a copy of the same DNA
in a common ancestor.

These ibd: Also these:
But not to each other.

E C D

• DNA that is ibd is (with

high probability) the same allelic

type, whereas non-ibd DNA is of

independent allelic type.

• Whether or not pedigree rela-

tionships are known, ibd under-

lies patterns of phenotypic simi-

larity among relatives.

• In a pedigree: ibd relative to the founders may be inferred
given marker data X and pedigree prior.

In a population: ibd at a locus may be inferred from local
marker data haplotypes X (e.g. • and •).
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Given ibd, we know all there is to know

These ibd: Also these:
But not to each other.

E C D

E C D

E

C

D

• • • o• Prob
b a a b q2

aq
2
b h

b a – b qaq2
b 1-h• For example:

Pr(E = ab, C = aa, D = ab)

• Or Pr(YE, YC, YD) =
∑
•
∑
• (Pr(YE|•, •)q(•)q(•)∑

•(Pr(YC|•, •)q(•)
∑

o•(Pr(YD|•,o•)q(o•)))

• Given ibd, the pedigree is no longer relevant.

The ibd may come from a pedigree or population inference.

A population probability model is needed to provide h.
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Multiple ibd among closely related individuals

FGL = founder genome label.1,2 3,49,1513,14

5,6 11,12

G
7,16

K V
8,10

A B JD F

E H U W

C

13 2 9

6 4 8

15 1 7 10

B,J A

E D G

C

FH

K W

VU

Pedigree irrelevant once ibd is known.

• Edges are observed individuals; nodes represent ibd genome.

For example: G,D, and F carry FGL “4”: B, J,E and D carry “13”.

• The ibd state at a locus is a partition of the gametes of observed

individuals: ({Ap}, {Am,Bm, Jm,Gp}, {Gm,Dm,Fm}, {Cp,Cm,Ep,Hp},
{Bp, Jp,Dp,Em}, {Hm,Fp}, {Kp}, {Km,Up,Wp}, {Um,V p}, {Wm,V m}).
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Trait-related ibd in population samples

• In a population, ibd levels may be lower, and partitions simpler,
but trait-related ibd can still indicate causal locations.

• Edges are individuals observed for a trait. Two edges sharing a
node indicate ibd of those individuals at that locus.

(a)
A,A U

A A

U U

AA

U

A A

A

AA

U

(b)
4.3,4.5 3.7

6.3 5.1

2.1 2.4

5.84.2

2.8

5.4 4.7

4.3

4.84.6

3.5

• Trait data may be

(a) qualitative, or

(b) quantitative.

• Individuals not

showing any ibd are

omitted.

• In regions of the genome with causal DNA, we should detect a
clustering of ibd associated with trait similarity.

• Assess significance by permutation of trait values.
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Inheritance of chromosome segments

CHROMOSOMES

2 loci  close

together 

gives high prob

of deriving from

same parental chromosome

5 POSSIBLE

OFFSPRING

CHROMOSOMES

TWO PARENTAL

• Each mat/pat genome of

3× 109 bp (∼ 3,000 Mbp)

is packaged into 22

chromosomes sized from

51 to 245 Mbp.

• Chromosomes are inherited

in large chunks, ∼ 108bp or

100 Mbp.

• In any meiosis, crossovers

occur as a Poisson process

along the chromosome, rate 1

per 108 bp.

• Over m meioses, collectively

crossovers occur as a Poisson

process, rate m per 108 bp.

• The distance to the next

crossover is exponential with

mean 108/m bp.

• Exponential distributions

have standard deviation equal

to the mean.
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ibd in remote relatives; (K. P. Donnelly, 1983)

Relatives separated

by m meioses.

Pr(2 kids get same)

= 1/2

Pr(descendants share)

= 2× (1/2)m

Pr(share any genome length L (108bp))

= 1− exp(−(m− 1)L/2m−1)

● ● ● ● ● ●
●
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●

●
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●

●

●

●
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●
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ANY L=30

POINTWISE

Length of ibd segment ∼ m−1 × 108 bp.
m = 12 m = 20

ibd at point 0.0005 2× 10−6

any ibd (L = 30) 0.148 0.001
length ibd segment 8.5 Mbp 5 Mbp

• ibd segments are rare but not short. The human genome is short.
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Detecting ibd among individuals in populations

• For model-based inference of ibd Z from SNP data X:

—need a model for the process of ibd Z along the chromosome,

—need a model for the SNP data X given Z.

• Each SNP alone gives almost no information, but ibd comes in

segments, with more and larger segments in closer relatives.

• DNA chunks that are ibd from a recent common ancestor are the

same allelic type for the SNPs in the chunk (with high probability).

DNA that is not ibd will be of “independent” allelic type—

basically, there will be differences at many SNPs.

• For model-based inference of ibd, use common variation!

Models require allele and/or haplotype frequencies;

Only for common SNPs can we have good estimates of the relevant

population allele and local haplotype frequencies.
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Realizing ibd segments from X in populations

• Two-haplotype model (Leutenegger et al. 2003)

ibd 0/1

allele-1

allele-2

• Two-parameter Markov model: marginal prob β, rate change α.

In reality, ibd is not Markov and expected segment length depends

on # meioses to the common ancestor.

• ibd ⇒ same allele; non-ibd ⇒ independent alleles.

Allow error so different alleles can still be ibd.

• Given a model, a standard HMM forward-backward algorithm gives

realizations of ibd {Z(j); j = 1, ..., `} given X, jointly over j,

where X are allele types on the chromosomes over all loci.

15



Model for pointwise ibd among multiple gametes

• Ewens’ sampling formula (ESF; Ewens, 1971) was originally de-
veoped to model allelic variation, but provides a one-parameter
model for the partition of any n exchangeable objects.

• Each partition Z of n gametes into k = |Z| ibd groups v

πn(Z) =
Γ(θ) θ|Z|

Γ(n+ θ)

∏
v∈Z

(|v| − 1)!

• If |Z| = k and Z has aj groups of size j

πn(Z) =
Γ(θ) θk

Γ(n+ θ)

∏
j

((j − 1)!)aj

with k =
∑
j aj, n =

∑
j jaj.

• Note for two gametes b and c, the probability of 1 group size 2 is

π2(Z = {b, c}) =
θ

θ(1 + θ)
((2− 1)!)1 =

1

(1 + θ)
≡ β

is the probability of ibd between two gametes.
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The Chinese restaurant process for building the ESF

• Tavaré and Ewens, 1997.

• Given a state with n people, at k tables, with aj tables at which
there are j people.
— New person sits at an empty table with probability ∝ (1 − β),
and to join each group of size j with prob. ∝ jβ.

• k =
∑
j aj, n =

∑
j jaj.

• Example: New gamete g added to
Z = (a, c, f), (b, e), (d) ∼ π6(·) which has k = 3, a3 = a2 = a1 = 1:

g joins probability new state Z∗ state character
(a, c, f) 3β/(1 + 5β) (a, c, f, g), (b, e), (d) k = 3, a4 = a2 = a1 = 1

(b, e) 2β/(1 + 5β) (a, c, f), (b, e, g), (d) k = 3, a3 = 2, a1 = 1
(d) β/(1 + 5β) (a, c, f), (b, e), (d, g) k = 3, a3 = 1, a2 = 2
(·) (1− β)/(1 + 5β) (a, c, f), (b, e), (d), (g) k = 4, a3 = a2 = 1, a1 = 2

If Z ∼ π6(·), then Z∗ ∼ π7(·). (n changes from 6 to 7.)
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Changing ibd partitions across the chromosome

13 2 9

6 4 8

15 1 7 10

B,J A

E D G

C

FH

K W

VU

13 2 9

6 4 8

15 7 10

B,J A

E D G

C

FH K

W

VU

13 2 93

6 4 8

15 7 10

BJ A

E D G

C

FH K

W

VU

• Partition: ({Ap}, {Am,Bm, Jm,Gp}, {Gm,Dm,Fm}, {Cp,Cm,Ep,Hp},
{Bp, Jp,Dp,Em}, {Hm,Fp}, {Kp}, {Km,Up,Wp}, {Um,V p}, {Wm,V m}).

• Becomes:({Ap}, {Am,Bm, Jm,Gp}, {Gm,Dm,Fm,Kp}, {Cp,Cm,Ep,Hp},
{Bp, Jp,Dp,Em}, {Hm,Fp}, {Km,Up,Wp}, {Um,V p}, {Wm,V m}).

• Becomes:({Ap}, {Am,Bm,Gp}, {Gm,Dm,Fm,Kp}, {Cp,Cm,Ep,Hp},
{Bp, Jp,Dp,Em}, {Jm}, {Hm,Fp}, {Km,Up,Wp}, {Um,V p}, {Wm,V m}).

• Recombination events in the ancestry of the gametes will move

them among elements of the partition – we need a model for this

process.
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ibd partitions at a locus: the coalescent ARG

• The coalescent traces co-ancestry of chromosomes at a particular
locus, back to the most recent common ancestor (MRCA).

• ibd is always relative. Relative to time t generations ago;
Z = ((a, c, f)(b, e)(d)). Changing t, changes Z.
Pairwise ibd probability β is surrogate for t.

• Along a chromosome, the coalescent changes due to recombina-
tion events, and we have the ancestral recombination graph (ARG).

a c f b e d

t

r1

r2

For example:

r1: ((b, e), (d))↔ ((b), (e, d))

b e d

• If chromosomes share a

recombination breakpoint,

changes may involve > 1 chrom.

For example:

r2: ((a, c, f), (d))↔ ((a), (c, f, d))

• But ARG model is too complex for genome-wide use.

19



Model for changing ibd among multiple gametes

• Modified CRP due to Chaozhi Zheng, allows any 1 gamete to

move from one ibd subset to another, and has ESF as equil. dsn.

• Potential changes in ibd occur at some rate α per Mbp along the

chromosome, a normalized recombination rate ρ.

• At a potential change point:

— First, an extra gamete, *, is proposed as a singleton with prob.

∝ (1− β), and to join each group of size j with prob. ∝ jβ.

— Next, one of the n + 1 gametes is selected for deletion, and, if

not deleted, * is given the identity of the deleted gamete.

• Examples only, (each “dies” prob 1/7):
* joins probability interim state dies new Z∗

(a, c, f) 3β/(1 + 5β) (a, c, f,*), (b, e), (d) d (a, c, d, f), (b, e)
(b, e) 2β/(1 + 5β) (a, c, f), (b, e,*), (d) b (a, c, f), (b, e), (d)
(d) β/(1 + 5β) (a, c, f), (b, e), (d,*) e (a, c, f), (b), (d, e)
(·) (1− β)/(1 + 5β) (a, c, f), (b, e), (d), (*) * (a, c, f), (b, e), (d)
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A note about models

• In pedigrees and in populations, Mendelian segregation and the
crossover processes along a chromosome are real.

Pedigrees Populations
Model Mendelian segregation Ewens sampling formula

and crossover process or coalescent
Prior for inferring Yes Yes
ibd from X (if correct)
Null distribution Yes NO
for Z (if correct)

• In pedigrees, we can base both ibd realizations and null distribution
directly on this highly informative prior.

• In populations, the models based on ESF provides a good prior
for realizations of ibd given X – because the data dominate.

• The model is only a (flexible) prior; can be made more flexible
e.g. by including a component allowing a transition to a realization
from πn(Z) independent of current state with small probability δ.
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Realizing ibd partitions among multiple gametes

• We want joint inference, but for more than 6 gametes, the HMM
is impractical – the number of partitions (ibd states) gets huge.

• Two possible MCMC approaches (for haploid gametes) :
—Chaozhi Zheng – full Bayesian MCMC of parameters, transition
points and ibd transitions, given haplotype data.
—Chris Glazner – particle filter Monte Carlo approach.

• Another approach (due to Chris Glazner); (Results below).
Building the ibd state across a chromosome by adding diploid in-
dividuals successively to the ibd state, sampling from approximate
conditionals, constrained by current state:
Sample ibd among A, B, C: first sample (Z(A,B)|XA, XB), then
(Z(B,C)|Z(A,B), XB, XC), then (Z(A,C)|Z(B,C),Z(A,B), XA, XC).
Likelihood is “Product of approximate conditionals”

• Using Markov models for latent ibd, with marker data X dependent
on the latent ibd state, we can realize ibd Z among gametes of
individuals not known to be related.
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An example of related individuals in a population

• Causal DNA descends from

magenta founder to the three

green families.

• Quantitative trait is simulated

on green families, given geno-

types at the causal locus.

• Descent across the chromo-

some is simulated given descent

at the causal locus.

• SNP marker data are simu-

lated on the three green families,

given each SNP marker location

descent.
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Lod scores based on inferred ibd; No pedigree info!

• Results due to Chris Glazner.

0 50 100 150 200

−
5

0
5

10

Position (cM)

LO
D

 s
co

re

Trait locus

True simulated IBD
Estimated from phased markers
Estimated from unphased markers

• Results

assessed

by ability

to recover

linkage lod

score.

• Information

comes from

between

family ibd

• If data can be phased (i.e. we can identify the haplotypes that
make up the genotypes of the observed individuals) we can almost
perfectly recover the true-ibd curve.
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Summary:
Genetic analyses can be based on inferred ibd

• Modeling descent is important: ibd measures relevant location-
specific relatedness, whether in pedigrees or in populations

• Modeling genomes is important: our genomes are not 3 million
exchangeable SNPs. In terms of ibd segments, human genomes are
short.

• Models are important: Models do not mimic reality. Models pro-
vide a map to assess inferences and information.

• Models should be flexible:
— an unvalidated pedigree prior is not flexible.
— assuming no error in marker data is not flexible.

• In pedigrees and populations, modern SNP data, X enable realiza-
tions of ibd given X, but the source of the ibd inference is almost
irrelevant to analysis. (Pedigrees, if correct, provide a “true null”.)

• Genetic analyses can be based on inferred ibd.
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