
Λ colescent and look–down model with selection

Etienne Pardoux

Univ. d’Aix–Marseille

with Boubacar Bah

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 1 / 31



Contents

1 The Moran and the lookdown models

2 Λ look down with selection

3 The equation for the evolution of Xt

4 Large time behavior of Xt

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 2 / 31



The Moran and the lookdown models

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 3 / 31



The Moran model

Consider a population of fixed size N. Put at time t = 0 each
individual on a distinct level between 1 and N. The population evolves
as follows : for any ordered pair (i , j) (i 6= j), at rate 1/2, we throw an
arrow from i to j . At that time, a daughter of the individual siting on
level i replaces the individual siting on level j .
If we reverse time, we find an instance of Kingman’s N–coalescent
when following the genealogy of all the individuals in the population.
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The lookdown model, Donnelly and Kurtz ’96, ’99

The (original) lookdown model is obtained by reversing the downwards
arrows in the Moran model, so as to have arrow from i to j at rate 1
for all 1 ≤ i < j ≤ N. Note that the genealogy remains unchanged,
and provided the initial different individuals are displayed on the
various sites in an exchangeable manner, the population remains
exchangeable at all times > 0.
The modified lookdown model is the following variant of the initial
lookdown model : whenever a newborn is placed on level j at time t,
the individual who was siting on any level j ≤ k ≤ N − 1 at time t− is
shifted to the level k + 1 ; the individual who was sitting on site N at
time t− dies. The exchangeability property is still valid.
The huge difference with the Moran model is that it is easy to define
the lookdown model in case N = +∞ (which is impossible for the
Moran model).
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Λ look down with selection

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 8 / 31



Λ look down without selection

Consider an countably infinite population made of individuals of two
types, b and B .
The type b individuals are coded by 1, and the type B individuals by
0. We assume that the individuals are placed at time 0 on levels
1, 2, . . ., each one being, independently from the others, 1 with
probability x , 0 with probability 1− x , for some 0 < x < 1.
For each i ≥ 1 and t ≥ 0, let ηt(i) ∈ {0, 1} denote the type of the
individual sitting on level i at time t. We now describe the evolution of
(ηt(i))i≥1 for t > 0.
Consider a finite measure Λ on [0, 1] with Λ({0}) = Λ({1}) = 0, and a
Poisson Point Process

m =
∞∑
i=1

δti ,pi

on R+ × (0, 1) with intensity measure dt × ν(dp), where
ν(dp) = p−2Λ(dp).
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Each atom (t, p) of the Poisson point process m corresponds to a
birth event. To each (t, p) ∈ m, we associate a sequence of i.i.d.
Bernoulli random variables (Zi , i ≥ 1) with parameter p. Let

It,p = {i ≥ 1 : Zi = 1} and `t,p = inf{i ∈ It,p : i > min It,p}.

At time t, each level in It,p immediately adopts the type of the
smallest level participating in this birth event. For the remaining levels,
we reassign the types so that their relative order immediately prior to
this birth event is preserved.
More precisely

ηt(i) =


ηt−(i), if i < `t,p ;
ηt−(min It,p), if i ∈ It,p\{min It,p} ;
ηt−(i − (#{It,p ∩ [1, . . . , i ]} − 1)), otherwise.

What we have described is an instance of the modified lookdown
model of Donnelly and Kurtz ’99.
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Λ lookdown with selection

We now introduce selection, which favors the type B individuals, i.e.
the 0’s.
We do that by introducing deaths. Each type 1 individual dies at rate
α > 0, her vacant level being occupied by her neighbor who sits
immediately above her, who herself is replaced by her neighbor above,
etc.
In other words, independently of the above arrows, crosses are placed
on all levels according to mutually independent rate α Poisson
processes. Suppose there is a cross at level i at time t. If ηt−(i) = 0,
nothing happens. If ηt−(i) = 1, then

ηt(k) =

{
ηt−(k), if k < i ,
ηt−(k + 1), if k ≥ i .
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Construction of the lookdown 1

Without selection, there is no difficulty in defining our process. Indeed,
for each finite size N, the model is easily defined (individuals who are
pushed above level N die). This is because there are finitely many
birth events on any finite time interval. Indeed

#{i , (ti , pi ) ∈ m, ti ≤ t and |Iti ,pi ∩ [1, . . . ,N]| ≥ 2} <∞.
Indeed the probability that an atom (t, p) affects at least 2 individuals
among N is

1−(1−p)N−Np(1−p)N−1≤
(
N
2

)
p2, and

∫ 1

0
p2ν(dp) =

∫ 1

0
Λ(dp) <∞.

If N < M, the N–model is a restriction of the M–model. Hence the
infinite population model is defined by a projective limit argument.
The same is not true for the model with selection : who will occupy
site i at time t does not depend only upon what happens on sites
{1, 2, . . . , i} between time 0 and time t. Indeed, at a death event
individuals go down.
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Construction of the lookdown 2

Imagine that the model with selection has been defined. Consider a
type B individual (i.e. a 0) siting on some level i at time 0, and assume
that this individual, who never dies, remains at a finite level forever.
The behavior of the individuals who sit below that individual is
independent of what happens above that individual. Hence we can
define the “true” evolution of all individuals who are below that 0
individual, including him.
Let now Kt denote the lowest level occupied by a type 0 individual at
time t. There is no problem at defining the evolution of Kt , as well as
that of all individuals who sit below Kt at time t.
There are two possibilities :

either Kt reaches the lowest level 1 in finite time ;
or else Kt →∞, as t →∞.
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Construction of the lookdown 3

In case Kt hits the lowest level 1 at some finite time τ , after that time
the type 0 individuals invade all levels. Then one can show that for
any N > 1, there exists a level ψ(N) (which also depends upon τ)
such that any individual located at time 0 on a level ≥ ψ(N) will never
get below level N. Hence we can construct our model on levels 1 up to
N, for each N ≥ 1, and we are done.
If Kt →∞ as t →∞, then we can construct our model below Kt ,
hence also below the trajectory of the second lowest 0 at time t = 0,
the third,.. which allows one to define the whole model.

Some care is needed to treat the case where one of those trajectories
reaches infinity in finite time.
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Exchangeability

It is essential to show that, once the initial condition {ηi (0), i ≥ 1} is
an exchangeable sequence (i.e. the ηi (0)’s are i.i.d., 1 with probability
x , 0 with probability 1− x), then for any t > 0, the collection of r.v.’s
{ηi (t), i ≥ 1} is exchangeable.
Essentially the proof argues that if the sequence is exchangeable just
before a birth or death event, then it remains exchangeable after the
event.
One important consequence of this result is that, as a consequence of
de Finetti’s theorem, if we define

XN
t =

1
N

N∑
i=1

ηi (t),

then for any t > 0, XN
t → Xt a.s. as N →∞, where Xt is the

proportion of type b individuals in the whole population.
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The equation for the evolution of Xt
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The equation for the evolution of XN

We have

XN
t = XN

0 +

∫
[0,t]×[0,1]4

ΨN(XN
s− , u, p, v ,w)M0(ds, du, dp, dv , dw)

− 1
N

∫
[0,t]×[0,1]

1u≤XN
s−

1ηs− (N+1)=0M
N
1 (ds, du),

where M0 and MN
1 are two independent Poisson Point Processes, with

intensity resp.

µ(ds, du, dp, dv , dw) = dsdup−2Λ(dp)dvdw , αNdsdu,

and

ΨN(r , u, p, v ,w) =
1
N

1FN
p (v)≥2

[
1u≤r

(
FN

p (v)− 1− GN,FN
p (v),r (w)

)
− 1u>rGN,FN

p (v),r (w)
]
,
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with

FN
p = 1− the distribution function of the B(N, p) law;

GN,n,r = 1− the d. f. of the hypergeometric law (N − 1, n − 1,
Nr − 1
N − 1

);

GN,n,r = 1− the d. f. of the hypergeometric law (N − 1, n − 1,
Nr

N − 1
).
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One has that ∫
[0,1]2

ΨN(r , u, p, v ,w)dudw = 0.

If we denote by M0 and MN
1 the respective compensated PPPs, we

have that

XN
t = XN

0 +

∫
[0,t]×[0,1]4

ΨN(XN
s , u, p, v ,w)M0(ds, du, dp, dv , dw)

− 1
N

∫
[0,t]×[0,1]

1u≤XN
s−

1ηs− (N+1)=0M
N
1 (ds, du)

− α
∫ t

0
XN

s 1ηs(N+1)=0ds.

If we denote byMN
t the first stochastic integral in this SDE, we have

〈MN〉t = Λ([0, 1])

∫ t

0
XN

s (1− XN
s )ds.
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Tightness and convergence as N →∞

It not too hard to deduce from Aldous’ criterion that the sequence of
processes {XN , t ≥ 0}N≥1 is tight in D([0,+∞)) equipped with the
Skorohod topology.
Under the condition that Λ([0, 1]) = +1, we show that the limit,
which is the asymptotic ratio of 1’s in the population, solves the SDE

Xt = X0 − α
∫ t

0
Xs(1− Xs)ds +

∫
[0,t]×[0,1]2

pΨ(u,Xs−)M(ds, du, dp),

which we call the Λ–Wright–Fisher SDE with selection.
Here Ψ(u, r) = 1u≤r − r and M is a compensated PPP with intensity
ds × du × ν(dp).
It follows from Dawson, Li’12 that the above SDE has a unique strong
solution. In the case without selection (α = 0), the above SDE
appears in Bertoin, Le Gall’05.
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Convergence 1

If we denote

Mt =

∫
[0,t]×[0,1]2

pΨ(u,Xs−)M(ds, du, dp),

we have that

〈M〉t = Λ([0, 1])

∫ t

0
Xs(1− Xs)ds.

The first main argument in the converge proof is to show that∫
[0,t]×[0,1]4

[ΨN(XN
s− , u, p, v ,w)− pΨ(u,Xs−)]M0(ds, du, dp, dv , dw)→ 0

in probability as N →∞,
which is a consequence of∫

[0,t]×[0,1]4
[ΨN(XN

s , u, p, v ,w)− pΨ(u,Xs)]2dsduν(dp)dvdw → 0.
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Convergence 2

Moreover
∫ t
0 XN

s 1ηs(N+1)=0ds →
∫ t
0 Xs(1− Xs)ds.

All we need to show is that
∫ t
0 Xs1ηs(N)=0ds →

∫ t
0 Xs(1− Xs)ds.

But we know already that the above quantity converges. In order to
identify its limit, it suffices to note that

1
N

N∑
k=1

∫ t

0
Xs1ηs(k)=0ds →

∫ t

0
Xs(1− Xs)ds,

which follows easily from de Finetti’s theorem.
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The classical WF SDE

Had we started with Λ = cδ0 (Kingman’s coalescent), we would have
obtained the classical Wright–Fisher SDE, where the stochastic
integral is

∫ t
0

√
cXs(1− Xs)dWs . In case of a general measure Λ, but

with 0 < Λ(0) < Λ([0, 1)), we have an SDE with both the Poisson and
the Brownian stochastic integrals.
Note that we can rewrite the continuous martingale
Mt =

∫ t
0

√
cXs(1− Xs)dWs in the form

M ′t =
√
c
∫

[0,t]×[0,1] Ψ(u,Xs)W (ds, du),
where W (ds, du) is a space–time white noise, and again
Ψ(u, r) = 1u≤r − r . Indeed the two continuous martingales satisfy
〈M〉t = 〈M ′〉t , since

〈M ′〉t = c
∫ t

0

∫ 1

0
(1u≤Xs − Xs)2duds

= c
∫ t

0
Xs(1− Xs)ds.
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Large time behavior of Xt
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Fixation and non fixation

Recall that the Λ coalescent comes down from infinity (in this case we
shall write Λ ∈ CDI ) iff (Schweinsberg ’00)

∞∑
n=2

φ−1(n) <∞,

where φ(n) =
∫ 1
0 [np − 1 + (1− p)n]ν(dp).

Our process Xt is a positive supermartingale, so Xt → X∞ a.s., as
t →∞. It is not hard to show that while Xt ∈ [0, 1], X∞ ∈ {0, 1}.
We have the

Theorem
If Λ ∈ CDI , then ∃ζ <∞ a.s. such that Xζ = X∞ (one of the two types
fixates in finite time).
If Λ 6∈ CDI , then 0 < Xt < 1 for all t ≥ 0 a.s.
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In the case without selection, since Xt is a bounded martingale,
E(X∞) = E(X0) = x .
In the case with selection, Xt is a supermartingale and E(X∞) < x .
We raise the question : are they situations where E(X∞) = 0, i.e. a.s.
the less fit individuals tend to disappear for sure.
In case of fixation (Λ ∈ CDI ), it is not hard to show that this cannot
be the case (E(X∞) > 0).

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 27 / 31



In the case without selection, since Xt is a bounded martingale,
E(X∞) = E(X0) = x .
In the case with selection, Xt is a supermartingale and E(X∞) < x .
We raise the question : are they situations where E(X∞) = 0, i.e. a.s.
the less fit individuals tend to disappear for sure.
In case of fixation (Λ ∈ CDI ), it is not hard to show that this cannot
be the case (E(X∞) > 0).

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 27 / 31



In the case without selection, since Xt is a bounded martingale,
E(X∞) = E(X0) = x .
In the case with selection, Xt is a supermartingale and E(X∞) < x .
We raise the question : are they situations where E(X∞) = 0, i.e. a.s.
the less fit individuals tend to disappear for sure.
In case of fixation (Λ ∈ CDI ), it is not hard to show that this cannot
be the case (E(X∞) > 0).

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 27 / 31



In the case without selection, since Xt is a bounded martingale,
E(X∞) = E(X0) = x .
In the case with selection, Xt is a supermartingale and E(X∞) < x .
We raise the question : are they situations where E(X∞) = 0, i.e. a.s.
the less fit individuals tend to disappear for sure.
In case of fixation (Λ ∈ CDI ), it is not hard to show that this cannot
be the case (E(X∞) > 0).

Etienne Pardoux (Univ. d’Aix–Marseille) Angers, 12/12/2013 with Boubacar Bah 27 / 31



In case of non fixation

Could we have X∞ = 0 a. s. when fixation takes an infinite time ?
In some cases the answer is yes, in other cases the answer is no.
We have

Theorem

Let µ =
∫ 1
0 [p(1− p)]−1Λ(dp). If µ < α, then X∞ = 0 a. s.

It can be shown that the “mean speed to the right” due to the birth
events of an individual sitting on level n is

Φ(n) =

∫ 1

0
(1− p)−1[np − 1 + (1− p)n]ν(dp),

and moreover Φ(n)
n → µ as n→∞.

Then the above theorem is intuitively clear : call again Kt the level of
the lowest individual of type 0. When Kt is large, his mean speed is
negative, hence Kt comes down, and will eventually reach the level 1.
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the lowest individual of type 0. When Kt is large, his mean speed is
negative, hence Kt comes down, and will eventually reach the level 1.
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But it is NOT the case that Λ 6∈ CDI ⇒ X∞ = 0 a. s.
We have

Theorem
If Λ(dp) = dp (i.e. in case of the BS coalescent), then for any α ≥ 0,

P(X∞ = 1) > 0.

Proof : It is sufficient to show that P(limt→∞ Kt =∞) > 0. Our
argument uses a comparison with a reflected Markov chain which is
known to converge to infinity by a result of Lamperti ’60.
Very recently, C. Foucart ’13, R. Griffiths’13 (see also Der, Epstein,
PLotkin ’12, ’12) show that

Theorem
If α < α∗, then P(X∞ = 1) > 0. If α ≥ α∗, then P(X∞ = 1) = 0.

Here α∗ = −
∫ 1
0 log(1− p) Λ(dp)

p2 (< µ).
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Consider the N–valued Markov process Rt with generator

Lg(n) =
n∑

k=2

(
n
k

)
λn,k [g(n − k + 1)− g(n)] + αn[g(n + 1)− g(n)],

where λn,k =
∫ 1
0 xk(1− x)n−kx−2Λ(dx).

Rt is in duality with Xt in the sense that

E [X n
t |X0 = x ] = E[xRt |R0 = n].

Now

E[X∞|X0 = x ] = lim
t→∞

E[Xt |X0 = x ]

= lim
t→∞

E[xRt |R0 = 1]{
> 0, if Rt is positive recurrent ;
= 0, if Rt is transient or null recurrent.

Finally, Foucart shows that Rt is positive recurrent if α < α∗, transient
if α > α∗. It is null recurrent if α = α∗.
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THANK YOU FOR YOUR ATTENTION !
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