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Basic Motivation

In an exponentially growing population, "families" grow exponentially
(on average) - nevertheless, some go extinct

Mutations generate new families

Size of family indicates when it arose

Can learn about dynamics of growth by studying family size statistics
(Manrubia, Zanette, Derrida)

History goes back to Galton and Watson - extinction of noble families
in England (1880’s)

What defines a family?
Any inheritable characteristic subject to mutation
• Surnames (Sociology)

• Genome (Evolutionary Biology)

• Species (Ecology)
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The Model

Discrete Generations

Each individual gives rise to some number of offspring and is then
removed

Number drawn from some IID distribution, with mean λ ≡ 1 + γ

Offspring belong to same family as parent, except for mutations,
which occur in a fraction µ of births

Mutations give rise to new family

Same as birth/mutation model of Yule, with number of children now
random
• In particular, we have possibility of 0 children; i.e. death
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Fokker-Planck Equation

Evolution equations:
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In limit of small growth, mutations, get Fokker-Planck eqn. for nm:
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σ2 is the variance of the offspring distribution

Smallness of γ − µ allows us to truncate after 2nd derivative
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Family size distribution

∂n
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∂
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Same equation as derived by Manrubbia and Zanette for a Moran
process, with σ2 = 2, appropriate for geometric distribution with
mean close to unity.

Solution: nm =
νRc
m

Γ (2 + ν) U

(
1 + ν, 0, Rc

m

No

)
With: ν ≡ µ

γ−µ, Rc ≡ 2Noγ
σ2(1+ν)

Normalization fixed by total population:
∑
mmnm = No

Power-law tail with exponent 2+ν (as in Yule)
• Has shoulder at small m, fewer small families due to demographic fluctuations

Generalizes Fisher-Log series for γ = 0 (no growth) case.
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Universality

nm =
νRc
m

Γ (2 + ν) U
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Rc ≡

2Noγ

σ2(1 + ν)

σ4n is a universal function of m/σ2 for given γ, µ
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Question #2: Subsampling

Rarely have access to entire population

Especially true for genetic data, species abundances

Subsample data favors large families, small families likely to be
missed entirely

Basic Observation: For a power-law distribution, sampling preserves the
power-law

Full answer: For a sample of size Ro: ("red" subpopulation)

nRm =
∑
p≥m

np

(
p
m

)(
No−p
Ro−m

)(
No
Ro

) ≈
∑
p≥m

np
e−pRo/No

m!

(
pRo
No

)m
Ro � No

≈ νRcB (2 + ν,m) sm 2F1 (m,m+ 1; 2 + ν +m; 1− s)

where s ≡ Ro/Rc, normalized sampling strength
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Subsampling

nRm = νRcB (2 + ν,m) sm 2F1 (m,m+ 1; 2 + ν +m; 1− s)

What does this mean?

Two limits:
• Strong sampling: Ro � Rc

n
R
m ≈ νRc

Γ(2 + ν)

m
U(1 + ν, 0,m/s)

Distribution is shifted down and to the left. Left "shoulder" shrinks

• Weak sampling: Ro � Rc.

Shoulder eliminated completely. Power-law tail starts for m over order 1.
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Subsampling
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Application 1: Surnames

MZ looked at surnames for various cities taken from telephone books
There is better data available from censuses
• USA: Last three censuses, 1790

• Norway: 2008

USA Census: 1790
• Compiled in 1915 for the 125th anniversary of the Census

• Use known growth rate of England population (basically constant γ from 1086
to 1800)
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The 2000 US Census

The US (and England) growth rate from 1790-1920 is much larger (by
a factor of 7.5!!) than the England 1086-1800 rate
• The US growth rate fell again after 1920

If we use a two-rate model, using the England 1986-1800 rate before
1800 and the 1790-1920 rate after, we get
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The US Census Puzzle

Using Best Fit Growth Rate
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Discrepancy of a factor of 102 in γ!!!!!!
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Norway 2 Stage Model

Same holds for Norway

γ = 0.05 before 1800, γ = 0.2 afterwards.
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Application 2: Haplotype Statistics

Inherited characteristic is noncoding mtDNA sequence

Not enough data (yet) to look at full family statistics

Concentrate on number of haplotypes (different sequences)
• This is only a single number - does not fix model parameters

• Consider number of haplotypes as function of sequence length: µ(`) = µ1`

• This is a nontrivial function - starts out linearly and saturates

Number of Haplotypes (Family Surnames) follows from Kummer
distribution

F =

{
νRc
2+ν [2F1 (1, 1; 3 + ν; 1)− (1− s) 2F1 (1, 1; 3 + ν; 1− s)] µ < γ

Rcs 2F1(1, 1; 2 + ν;−s) µ > γ

s ≡ R0/Rc ; ν ≡ min(µ(`),γ)
|γ−µ(`)| ; Rc ≡ 2No|γ−µ(`)|

σ2

David A. Kessler, Bar-Ilan Univ. SMEEG, 2013 12.12.2013



Recurrent Mutations

Theory assumes that each mutation gives rise to a new haplotype:
NO RECURRENT MUTATIONS
• Equivalent to infinite allele model

In real life, there are only four choices for each nucleotide

Less variety in short sequences
Simulated Data
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The Real Test: Data from China

1212 sequences from China of the HVR1 region of mtDNA, L = 377
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Result of "Hot Spots" in Genome: Loci with high mutation rate
• Mutation rates on various loci are distributed according to a Gamma

Distribution: f(µ1) =
(α/µ̄1)α

Γ(α) µα−1
1 e−αµ1/µ̄1

• 2 parameters, the average mutation rate, µ̄1, and α, 0.1 ≤ α ≤ 1.1

More recurrent mutations at these loci ⇒ impacts short sequences
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Best Fit
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Application 3: Species in Genera

Consider species (within a kingdom, say) as individuals. Reproduction
⇒ Speciation. Family ⇒ Genus.

Generally, new species belongs to some genus as originating species

Occasionally, new species starts new genus ⇒ Mutation

Then, our theory should be appropriate for numbers of species within
different genera

Question originally posed by Yule (1925): Yule’s model had speciation
& mutation, no extinction of species
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Species in Genera: The Data

Animalia Kingdom

deviations of the data from the model are caused by random
noise (in which case the ratio should be distributed homoge-
nously around one) or a systematic deviation between the model
and the data (in which case there would be a trend of the ratio).
The latter scenario, which is the case for the model by Yule (3),
implies that the model describes the data poorly.
The problematic fit reflects the property of Yule’s expression

(Eq. 1) that, for m > 2, the distribution quickly converges to the
asymptotic power law (expression 2 and SI Appendix) (3). Thus,
when plotted on a log–log scale, the SGD should decrease linearly
as m increases. Accordingly, the black line in Fig. 1 (which cor-
responds to Yule’s prediction) is quite straight on a log–log scale,
as expected, and the bending at values of m ≤ 20 is almost in-
visible. In contrast, the actual data (blue circles), although linear for
largem, exhibit a pronounced shoulder for small values ofm, which
is below the extrapolation of the large m straight line behavior.
Many empirical SGDs for different-sized taxa show the same

type of bending at intermediate values of m (see below), which
implies that Yule’s theory is incomplete. Some modern versions of
Yule’s theory [like the version in the work by Scotland and
Sanderson (28)] gave up the homogeneity assumption, but the
resulting fits to empirical data suffer from similar problems.
Our aim here is to extend Yule’s model (3), while keeping its

two main features: neutrality (all species have the same speciation
rate and the same chance of forming a new genus on speciation)
and homogeneity (rates are fixed in time). We suggest, in accord
with the work by Patzkowsky (8), that Yule’s approach falls

short, not because of its neutrality or homogeneity assumptions
but rather, because it neglects extinction. In Yule’s model, the
number of species is always growing, and existing species never go
extinct. We will explain how extinction affects the qualitative
features of the SGD statistics.

SEO Model
Although all species eventually go extinct, one might suppose that
a speciation-only theory should work. Let us again assume speci-
ation at rate λ and extinction at rate μ. As long as λ > μ (as sug-
gested by the long-term average of branching rates estimated from
available data) (29), the net diversification rate γ = λ − μ is pos-
itive. Given that γ determines the rate of increase in the number
of species within a genus, the size of an extant genus has been
growing on average. One can imagine that a speciation-only model
with γ as the speciation ratemight yield the same results as amodel
with both extinction and speciation but having the same net di-
versification rate γ. If, within 1My, we have three speciation events
and two extinctions on average, why can we not use a theory with
one speciation per 1 My instead?
The answer has to do with the importance of fluctuations in this

type of stochastic process, particularly in the presence of an ab-
sorbing state. Although the size of a genus increases on average,
a given genus may also disappear because of random extinction
events. After extinction, a genus cannot recover. Accordingly, the
ratio between the numbers of genera in the larger genus size
classes will satisfy the prediction of Yule’s theory (3), because with
a positive diversification rate, they rarely go extinct; thus, the net
growth rate approach works. For small genera, however, fluctua-
tion-induced extinctions of a genus are relatively frequent, and one
can notice a substantial underrepresentation of small genera with
respect to the ratio suggested in Eq. 1. As can be seen in Fig. 1, the
right tail of the distribution indeed follows a power law, but with
respect to this power law, there is a pronounced underrepresen-
tation of small genera that characterizes most SGDs.
The importance of extinction events and their role in shaping

macroevolutionary patterns were already pointed out in the works
by Aldous et al. (30, 31), which considered many features of the
tree of life using a model that includes, as our model does, spe-
ciation, extinction, and origination of new genera. Aldous et al.
(30, 31) assumed, however, that the overall diversification rate is
zero, and therefore, on average, the number of lineages is kept
fixed along the tree of life. The increase in the number of species
with time appears only through the boundary conditions [i.e.,
Aldous et al. (30, 31) considered the set of γ = 0 processes con-
ditioned on the number of species at present].
We suggest that the increase in the number of taxa through time

is not a coincidence but that it reflects the fact that the di-
versification rate of extant clades has been positive. We also have
to condition our process on the number of species at present, but
the underlying dynamics are different; accordingly, the SGD has
a totally different form. In particular, the real SGD statistics
may admit a power law tail, and therefore, the chance of finding
a huge genus is small but not negligibly small. As we shall show
below, this result emerges naturally for γ > 0 processes, as is the
case for most of the groups that we analyzed. In the model by
Aldous et al. (30, 31) [also in a similar case considered recently
by Foote (10)], the number of species within a genus is decreasing
on average, because some of the speciation events lead to the
origination of a new genus and do not contribute to the growth
of the genus from which they emerged. For these models, there
is a natural cutoff for the size of a genus, which is in contrast with
most of the empirical datasets analyzed.
We assume that the current distribution of genus sizes within

a clade (i.e., the existing species descending from a common an-
cestor) results from a neutral and homogenous stochastic process
that includes speciation, extinction, and origination of new genera.
In the SEO process, any species may produce an offspring lineage
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Fig. 1. The SGD statistics for the kingdom Animalia. The graph shows the
number (n) of genera with m species on a double logarithmic scale (Pareto
plot) with logarithmic binning (SI Appendix). The solid black line is the best
fit of Yule’s model (Eq. 1) to the data, for which ν = 0.2 (3). This value was
obtained by a least squares fit (distance has been measured in logarithmic
units), where ν is a free parameter. The solid red line is the best fit of the SEO
model (Eq. 4), with a diversification (speciation minus extinction) rate of γ =
0.063 ± 0.0032 and the probability of origination of a new genus (on spe-
ciation) of ν = 0.026 ± 0.001. The confidence intervals were obtained from
a parametric bootstrap (more details in SI Appendix). A nonparametric
bootstrap leads to confidence intervals about one-half the size. The slight
deviations for m = 1 reflect the inadequacy of the continuous theory in this
regime as explained in the text. Using Monte Carlo simulations, we can get
estimates for the case m = 1 (Table 2). In the inset, we present the ratio
between the observed statistics and the models’ predictions as a way to
assess the models’ validity. A valid model should present a random distri-
bution of the ratios around one, whereas an invalid model will present
a trend. Yule (3) was aware of this problem and added two more parameters
that improved the fit to the data, but these parameters obscured the un-
derlying process. A discussion of this topic is in SI Appendix.
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Species in Genera: More Data

exhibits a systematic deviation of the ratio (38). Such a trend shows
that, even if the R2 of the fit is close to unity, the model does not
capture the true behavior of the data. In addition, the largest
magnitude of the deviations for the Yule model is about 250%,
whereas it is only 40% for the SEO model.
Fig. 2 presents a similar graph for the kingdom Plantae and

the class Aves (binned with a fixed number of genera per bin) (SI
Appendix). Again, the SEO model captures the entire dataset,
including the small to intermediate m behavior.
The SGD is one prediction of the SEO model, with the ad-

vantage that a large amount of data of this type can be collected
relatively easily, but other predictions of the SEO model that re-
late to the phylogenetic tree of species can be tested as well. For
example, an assumption of the SEO model is that, on average, the
size of a genus grows exponentially with its age, and thus, there
should be a positive correlation between genus age and size. An-
other prediction is that the distribution of genus origination times
(measured backward) should be left-skewed because of the fact
that the number of new genera originating every generation is
proportional to the number of species, which grows with time. It is
difficult to collect data for these quantities, which would enable
a precise fitting of the model to the data. However, it is still
possible to test the general behavior of the limited available data
for a basic qualitative agreement between the model’s predictions
and the data.
The sizes of taxonomic groups and their ages have been shown

to be positively correlated in some analyses (39, 40) and unrelated
in others (41). However, for our purposes, it is important to test
the relationship between age and diversity at the low level of
genera. As far as we know, no wide-scale analysis of such a re-
lationship has been undertaken, and conducting such an analysis is
outside the scope of this article. However, we analyzed the genera
of one family to test the age skewedness, and in that context, we
also analyzed the age–diversity correlation.
To this end, we used the phylogenetic tree of the Furnariidae

family of suboscine passerine birds constructed byDerryberry et al.
(32). We chose this family, because it is a relatively large group
with an existing phylogenetic tree of virtually all species. Using this
tree, we obtained the crown age of each genus (the age of the most
recent common ancestor of all of the species; see below) and its
size. Fig. 3 presents the size of each genus vs. its age (not including
monotypes because of the inability to determine their age). Al-
though the process is noisy, the growth of the genus size with age is

still clearly seen (the data for Fig. 3 are given in SI Appendix, Table
S2), and the slope of size vs. age is 0.099 (0–0.2) per species gen-
eration, which is similar to the exponential growth rate of the
number of species of passerine birds.
Furthermore, as expected from the SEOmodel, the skew of the

ages of the 38 genera in the Furnariidae family is indeed positive:
1.95 (which is about five times larger than the SE of the skew at 0.4;
i.e., P < 10e-6). This strong bias can also be seen in Fig. 3. To test
whether this strength of skew is expected under the SEO model,
we simulated 1,000 realizations with the parameters of the Fur-
nariidae family: n = 247, λ = 0.10, and ν = 0.12. The age skew of
genera within the Furnariidae was inside the 95% confidence in-
terval of the simulations. Finer measures, like the mode, are
harder to estimate given the small number of genera.

Inference from the SEO Model. The fit of the SEO model to an
observed SGD generates estimates of past demographic parame-
ters. These parameters may be compared with estimates from
other methods to assess the realism of the SEO model. For ex-
ample, in Fig. 2, we consider genera within the class Aves. The
fitted value for the average rate of diversification can be used to
estimate the time of origin of birds, which is consistent with esti-
mates based on paleontological and molecular data.
It should be noted that, in the framework of the SEOmodel, the

time of origin of a taxonomic group is the time when the first
species of this group appeared. This time may be older than both
the crown age (the age of the most recent common ancestor of all
existing species) and the age of the oldest fossil. Nevertheless,
estimates of the origination times of major taxa have sufficient
uncertainty that we would not expect more than a general corre-
spondence to estimates derived from the SEO model.
With a fixed exponential growth rate, we can estimate the time

of the most recent common ancestor of modern birds from the
total number of bird species (N) and the diversification rate, which
would be T = ln(N)/γ = 114 (97–138) generations ago. Assuming
that a generation (a species duration) is between 1.4 and 2.8 My
(42), we derive T = 239 My (95% confidence interval = 386–135;
we multiply the expectation by 2.1 My, the lower boundary by 1.4
My, and the upper boundary by 2.8 My), which brackets the ear-
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Fig. 2. SGD statistics for the kingdom Plantae (blue dots) and Aves class
(open squares) compared with the fitted SEO model for (Upper Right Inset)
the Plantae (diversification rate of γ = 0.055 ± 0.005 and origination prob-
ability of ν = 0.017 ± 0.0012) and (Lower Left Inset) the Aves (diversification
rate of γ = 0.08 ± 0.021 and origination probability of ν = 0.089 ± 0.010).
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Fig. 3. The correlation between the age of a genus and its size is presented.
The x axis is the crown age of a genus as estimated in the work by Derryberry
et al. (32). The y axis is the log (base e) of the size of the genus. The red line is
the linear fit of the data that corresponds to exponential growth. The result
is consistent with the SEO model that predicts an exponential growth. The
slope of the linear fit is 0.047 (0–0.095) per million years. Assuming a species
generation time of 2.1 My, the slope is 0.099 (0–0.2), which is similar to the
result that we get below for the passerine birds.
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From growth rates, can infer Time to Most Recent Common Ancestor
for the various kingdoms. These are roughly consistent (±30%) with
fossil & DNA estimates (except for Diplopoda (factor of 7 low).
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Controversy: Do Genera exist?

No rigorous criteria for grouping species into genera

Many biologists therefore claim that genera are purely human artifacts
with no biological reality

This data would suggest otherwise
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Summary

Universality for slow growth, mutation

"Critical Sampling" Rc = 2γ
σ2(1+ν)

No for disappearance of shoulder

Simplest models have to be modified to fit reality
• Varying growth rate in census data

• Recurrent mutations, variable mutation rate in genome data

• Failures are always more instructive than success

Genera may actual be real
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