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What determines genome size?
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The usual « thought experiment »
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Theory 1: Shorter is better
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Theory 2: Small populations cannot get rid of
transposable elements (Lynch & Conery 2003)
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Theory 3: Biases in the small indels mechanisms drive
genome size evolution (Petrov 2002, Kuo et al. 2009)
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The question we ask:
is the intuitive reasoning correct?
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How will genome size evolve if :

- duplications are twice as frequent as deletions,

- transposable elements proliferate,

- and selection systematically favors the highest gene numbers?



Let’s build a minimal model
for genome size evolution



A minimal model for genome size evolution

Space of all possible genome sizes: N*
Infinite population, density vector at time t: /¢

Transition matrix due to
small and large mutations: Mg = ((MG)z‘j)i,jeN\{O}

Evolution in discrete time,
without selection (Markov chain): Vi1 = l/tMG



Possible mutations for a genome of size s,

~

* Small insertions: + 1 to + [, bases The transition
ins probabilities can be

defined arbitrarily, but
* Small deletions: - 1 to- [, bases should not depend on

) ) —  the starting size s, .
(if possible) & ’

Each possible final
state is reached with
> probability 1/s,, .
* Large deletions: - 1 to - 5, bases (But we will

_/ generalize later).

* Duplications: + 1 to + 5, bases

> Elementary matrices M,

ins’

M sdel’ M dup’ M Idel

where e.g. (M,,),; is the probability that a genome of initial
size i ends up with size j after exactly one small insertion



Why a uniform distribution for the size of
the duplications and deletions?

 Assumption on the underlying mechanism: uniformly distributed
breakpoints

* Observations in bacteria: single deletions up to more than 200 kb =
180 genes (Porwollik et al, 2004; Nilsson et al, 2005)

e Observations in humans (Lupski, 2007):

— in 50% of the cases, the Charcot-Marie-Tooth disease is caused by a 1.4 Mb
duplication

— In 90% of the cases, the Smith-Magenis syndrom is caused by a partial
deletion of chromosome 17, spanning from 950 kb to 9 Mb... (9\VIb is twice
the size of the complete genome)

And we cannot observe the lethal events, which may be even larger...



The mutation rates: From the elementary
matrices to the full transition matrix M

* 4 mutation rates : Hinss Usder> Hiders /’{dup
* Expressed per bp per generation

* Total mutationrate: u = u;, + Uy + Uyge + Haup

* Assumption: mutations follow independent Poisson processes,
no preferred order

) Intermediate matrix M, =%mpr, 4B gy Bdw gy B gy

sdel dup ldel
u u

where (M;);; is the probability that a genome of initial size i
ends up with size j after exactly one mutation



The mutation rates: From the elementary
matrices to the full transition matrix M

* 4 mutation rates: Hinss Usder> Hiders fudup
* Expressed per bp per generation

* Total mutationrate: yu = ;. + U + Hygor + Haup

* Assumption: mutations follow independent Poisson processes,
no preferred order

L) Intermediary matrix M, = p1,, 4 Bt M, + 2wy P gy
u

u " dup Idel
o oM (N
> Finally (MG)U_ =En=oe r(ll!u) (M]’f)l_j

which is the probability that a genome of initial size i ends up
with size j at the end of the reproduction



Related models

* Quasispecies models
— initial model was very general [Eigen, 1971]

— but most results were obtained for the special case of fixed
genome length and point mutations only [Eigen, 1971; Nowak &
Schuster, 1989; Barbosa et al., 2012].

* Population genetics models for microsatellite and

transposable elements

— number of elements not bounded [Falush & Iwasa, 1999]

— additive and multiplicative effects [Stephan, 1987; Falush & Iwasa,
1999]

— several mutations can occur during the reproduction [Ohta &
Kimura, 1981; Stephan, 1987]

— but no model combines those three features



What does this model answer
to our original question ?
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How will genome size evolve if :
- duplications are twice as frequent as deletions (1, = 2u,)),
- transposable elements proliferate (u;,, > 1.,



Result 1: Condition for non-infinite growth
without selection

Theorem 2 (Stationary distribution for genome size without selection). If (2log2 —1)pdup < fidel, then
the Markov chain (N*, M) has a unique asymptotic stationary probability vector v.,. For any initial

distribution vg, the distribution of genome sizes converges to V... Mathematically,
lim |[yoMs — voo|| =0
t— o0

Biologically, the convergence of the distribution implies that, even after a long time of evolution, genome

size does not tend to infinity: an arbitrary large part of genomes is located beneath a finite size.

No infinite growth if u,,, < 2.6 u,,,
This condition is independent from the rates of small insertions (eg
transposable elements) and small deletions

The proof uses Doeblin’s condition.

[Fisher et al. , submitted]



Result 2: Even a caricatural selection cannot push the

genomes towards an infinite size
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Which properties
underlie these results?



Property 1: Asymmetry of duplications and
deletions in logarithmic scale

Linear scale: apparent symmetry but no scale invariance. The behavior is
hard to predict intuitively.

+'14 Haup = Hige Houp = 2Higel 1
o~ Starting size s E(s:] = so [E[Sql—>S]
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Log scale: scale-invariance, no symmetry anymore. A mutational bias
towards shrinkage is revealed, even for u,,, = 2u,,,,.
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Property 1: Asymmetry of duplications and
deletions in logarithmic scale

Property 1. Let A(s) = E [log(S,+1)|Sn = s] — E [log(S,)|S. = s|, the average size of one-mutation

jumps in logarithmic scale, starting from s.

e if the (n+1)th mutation is a large deletion, A(s) — —1.

S—+00

e if the (n+1)th mutation is a duplication, A(s) — 2log2 — 1.

s—+o0

e if the (n+1)th mutation is an indel, A(s) — 0.

s——+00

This property is important in the proof of the first result
(condition for the existence of a stationary distribution).



Generalization to non-uniform distributions for
the size of duplications and deletions

Corollary 1. (Generalization of Theorem 2) Suppose we have distributions of duplications, large deletions
and indels, such that there erists a positive and increasing scaling function f that verifies the following

conditions.

For A(s) = E [f(Snt1) — f(Sn)|Sn = s]:
e if the (n+1)th mutation is a deletion, A(s) "y Oidel -
8—+400

e if the (n+1)th mutation is a duplication, A(s) — Oqup.

8—+00

e if the (n+1)th mutation is an small insertion, A(s) orhe Oins-

e if the (n+1)th mutation is an small deletion, A(s) s_}—+>oo Oedel -

where diger < 0, dgup > 0, dins > 0 and dgg4e1 < 0 are constants among which at least one is nonzero.

Then the Markov chain (N*,M¢) has a unique stationary probability vector vy, if

/—leeléldel + ,deup(sdup + /-Lins(sins + /-Lsdel(ssdel <0 (4)



Property 2: Larger genomes undergo more
mutations
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This property is important in the proof of the second result
(selection cannot overcome the spontaneous mutational dynamics).



Let’s simulate the model with
(a rather brutal) selection



Introducing fitness :
coding versus non-coding DNA

Fitness

log (g)

>

Gene number (g)

Hypotheses:

circular genome described by
its gene number g and the
number of non-coding bases,

Genes all have the same
(fixed) length

Non-coding bases are equally
distributed between genes

The fitness is a monotonically
increasing, not bounded,
function of g

N1 = N o M
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How will genome size evolve if :

- duplications are twice as frequent as deletions,

- transposable elements proliferate,

- and selection systematically favors the highest gene numbers?



Intuitive threshold
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Infinite population Finite small population (N=50)
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OK, the intuition fails in this scenario...

but in reality, the rates of duplication and
deletion do not evolve independently



Evolved genome size is inversely proportional to
the rate of multiplicative events
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Conclusion
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* The instability caused by duplications and deletions prevents
genomes from growing above a certain threshold

* Below this threshold, this mutational bias is weaker and other

pressures can play a role



Perspectives

* Incorporate transposable elements in the simulations too,
not just in the formal analysis

* Update after each duplication or deletion the number of
other events to be done, not just at each replication

 Try more realistic fitness landscapes, where not every
duplication is beneficial and where deletions can be lethal

Take-home message

Evolution can be more subtle than we think, do not
trust « thought experiments »
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(Non) effect of small insertions and small deletions on
the stationary distribution of genome size
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