Slow-fast stochastic dynamics and quasi-stationary behavior of a diploid population

Camille Coron

LMO, Université Paris-Sud

SMEEG Conference Angers December 10, 2013

Motivation

- Consider a population of individuals that gets extinct a.s. in finite time
- One gene, two alleles.
- In a long-time scale, conditionally to the surviving of the population, which allele will remain?
- Can we observe a long-time coexistence of the two alleles?

Understand the quasi-stationary behavior of a diploid population.

Model

- Diploid individuals.
- 1 gene, 2 alleles, A and a: genotypes AA, Aa and aa.
- 3-type logistic birth-and-death process with Mendelian reproduction:

$$(Z_t, t \geq 0) = ((Z_t^1, Z_t^2, Z_t^3), t \geq 0).$$

• Population size at time t: $N_t = Z_t^1 + Z_t^2 + Z_t^3$.

Birth and death rates

If
$$Z_t = z = (z_1, z_2, z_3) \in (\mathbb{Z}_+)^3$$
 with $n = z_1 + z_2 + z_3$,

Diploid Mendelian reproduction:

$$\lambda_1(z) = \frac{b_1}{n} \left[(z_1)^2 + z_1 z_2 + \frac{(z_2)^2}{4} \right]$$

Competition and natural death:

$$\mu_1(z) = z_1(d_1 + c_{11}z_1 + c_{12}z_2 + c_{13}z_3)$$

Scaling

- Large population size assumption.
- Population represented by the pure jump process: $Z^K = Z/K \in (\mathbb{Z}_+/K)^3, K \longrightarrow +\infty.$
- Scaling of demographic parameters and hypotheses:

$$\begin{aligned} b_i^K &= \gamma K + \beta_i \\ d_i^K &= \gamma K + \delta_i \\ c_{ij}^K &= \frac{\alpha_{ij}}{K} \\ Z_0^K &\underset{K \to \infty}{\longrightarrow} Z_0 \quad \text{in law,} \end{aligned}$$

there exists $C \geq 0$ such that for all $K \in \mathbb{N}^*, \mathbb{E}\left((N_0^K)^3\right) \leq C,$

where $\gamma > 0$ and Z_0 is a $(\mathbb{R}_+)^3$ -valued random variable.

Hardy-Weinberg deviation, new variables

Deviation from Hardy-Weinberg equilibrium:

$$Y_{t}^{K} = \frac{4Z_{t}^{1,K}Z_{t}^{3,K} - (Z_{t}^{2,K})^{2}}{4N_{t}^{K}} = N_{t}^{K}(p_{t}^{AA,K} - (p_{t}^{A,K})^{2})$$

$$= N_{t}^{K}(2p_{t}^{A,K}p_{t}^{A,K} - p_{t}^{Aa,K})$$

$$= N_{t}^{K}(p_{t}^{aa,K} - (p_{t}^{a,K})^{2})$$

- $X_t^K = \frac{2Z_t^{1,K} + Z_t^{2,K}}{2N_t^K} = \text{proportion of allele } A \text{ at time } t.$
- $2Z_t^{1,K} + Z_t^{2,K} = N_t^{A,K} = \text{number of alleles } A \text{ divided by } K \text{ at time } t$,
- $2Z_t^{3,K} + Z_t^{2,K} = N_t^{a,K} = \text{number of alleles } a \text{ divided by } K \text{ at time } t.$

$$(Z_t^{1,K},Z_t^{2,K},Z_t^{3,K})\longleftrightarrow (N_t^K,X_t^K,Y_t^K)\longleftrightarrow (N_t^{A,K},N_t^{a,K},Y_t^K)$$

Fast dynamics

Proposition

For all
$$s, t > 0$$
, $\sup_{t \le u \le t+s} \mathbb{E}((Y_u^K)^2) \longrightarrow 0$ when K goes to infinity.

Proof.

By Kolmogorov-forward equation,

$$\frac{d\mathbb{E}\left((Y_t^K)^2\right)}{dt} \leq -2\gamma K \mathbb{E}\left((Y_t^K)^2\right) + C_1.$$

• Y^K is a fast variable and the population converges to Hardy-Weinberg equilibrium.

Slow dynamics

Theorem

The sequence of processes $\{((N_t^{A,K}, N_t^{a,K}), t \geq 0)\}_{K\geq 0}$ converges in law in $\mathbb{D}([0,T],(\mathbb{R}_+)^2)$ toward a continuous-time diffusion process (N^A,N^a) such that in the neutral case where $\beta_i=\beta$, $\delta_i=\delta$, $\alpha_{ii}=\alpha$ for all $i,j\in\{1,2,3\}$:

$$dN_{t}^{A} = \sqrt{\frac{4\gamma}{N_{t}^{A} + N_{t}^{a}}} N_{t}^{A} dB_{t}^{1} + \sqrt{2\gamma \frac{N_{t}^{A} N_{t}^{a}}{N_{t}^{A} + N_{t}^{a}}} dB_{t}^{2}$$

$$+ \left(\beta - \delta - \alpha \frac{N_{t}^{A} + N_{t}^{a}}{2}\right) N_{t}^{A} dt$$

$$dN_{t}^{a} = \sqrt{\frac{4\gamma}{N_{t}^{A} + N_{t}^{a}}} N_{t}^{a} dB_{t}^{1} - \sqrt{2\gamma \frac{N_{t}^{A} N_{t}^{a}}{N_{t}^{A} + N_{t}^{a}}} dB_{t}^{2}$$

$$+ \left(\beta - \delta - \alpha \frac{N_{t}^{A} + N_{t}^{a}}{2}\right) N_{t}^{a} dt$$

Comparison with the haploid case 1

Diploid population:

$$\begin{split} dN_{t}^{A} &= \sqrt{\frac{4\gamma}{N_{t}^{A} + N_{t}^{a}}} N_{t}^{A} dB_{t}^{1} + \sqrt{2\gamma \frac{N_{t}^{A} N_{t}^{a}}{N_{t}^{A} + N_{t}^{a}}} dB_{t}^{2} + \left(\beta - \delta - \alpha \frac{N_{t}^{A} + N_{t}^{a}}{2}\right) N_{t}^{A} dt \\ dN_{t}^{a} &= \sqrt{\frac{4\gamma}{N_{t}^{A} + N_{t}^{a}}} N_{t}^{a} dB_{t}^{1} - \sqrt{2\gamma \frac{N_{t}^{A} N_{t}^{a}}{N_{t}^{A} + N_{t}^{a}}} dB_{t}^{2} + \left(\beta - \delta - \alpha \frac{N_{t}^{A} + N_{t}^{a}}{2}\right) N_{t}^{a} dt \end{split}$$

Haploid Lotka-Volterra diffusion (P. Cattiaux & S. Méléard (2010)):

$$dN_{t}^{A,h} = \sqrt{2\gamma N_{t}^{A,h}} dB_{t}^{1} + (\beta - \delta - \alpha (N_{t}^{A,h} + N_{t}^{a,h})) N_{t}^{A,h} dt$$

$$dN_{t}^{a,h} = \sqrt{2\gamma N_{t}^{a,h}} dB_{t}^{2} + (\beta - \delta - \alpha (N_{t}^{A,h} + N_{t}^{a,h})) N_{t}^{a,h} dt$$

Comparison with the haploid case 2

Diploid population:

$$dN_t = (\beta - \delta - \alpha N_t) N_t dt + \sqrt{2\gamma N_t} dB_t^1$$

$$dX_t = \sqrt{\frac{\gamma X_t (1 - X_t)}{N_t}} dB_t^2.$$

Haploid population (P. Cattiaux & S. Méléard (2010)):

$$dN_t^h = (\beta - \delta - \alpha N_t^h) N_t^h dt + \sqrt{2\gamma N_t^h dW_t^1}$$
$$dX_t^h = \sqrt{\frac{2\gamma X_t^h (1 - X_t^h)}{N_t^h}} dW_t^2.$$

Long time behavior of (N, X) and change of variables

- Cattiaux, Collet, Lambert, Martinez, Méléard, San Martín (2009): For all $(n,x) \in \mathbb{R} \times [0,1]$, $\mathbb{P}_{(n,x)}^{N,X}(\mathcal{T}_0 < \infty) = 1$.
- Change of variables:

$$egin{aligned} S_t^1 &= \sqrt{rac{\gamma N_t}{2}} \cos\left(rac{rccos(2X_t-1)}{\sqrt{2}}
ight) \ S_t^2 &= \sqrt{rac{\gamma N_t}{2}} \sin\left(rac{rccos(2X_t-1)}{\sqrt{2}}
ight). \end{aligned}$$

Under symmetric assumptions of the competition parameters the diffusion process $S = ((S_t^1, S_t^2), t \ge 0)$ satisfies

$$dS_t = dW_t - \nabla Q(S_t)dt.$$

Diffusion coefficient

$$Q(S) = \begin{cases} \frac{\ln\left(\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}\right)}{2} + \frac{1}{2}\ln\left(\sin\left(\sqrt{2}\arctan\left(\frac{S^{2}}{S^{1}}\right)\right)\right) \\ - \left(\beta - \delta - \frac{\alpha\gamma}{4}\left(\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}\right)\right) \frac{\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}}{4} \\ \text{if } S^{1} \geqslant 0 \\ \frac{\ln\left(\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}\right)}{2} + \frac{1}{2}\ln\left(\sin\left(\sqrt{2}\left(\arctan\left(\frac{S^{2}}{S^{1}}\right) + \pi\right)\right)\right) \\ - \left(\beta - \delta - \frac{\alpha\gamma}{4}\left(\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}\right)\right) \frac{\left(S^{1}\right)^{2} + \left(S^{2}\right)^{2}}{4} \\ \text{if } S^{1} \leqslant 0. \end{cases}$$

Definition space, absorbing sets

Figure : Set \mathcal{D} of the values taken by S_t , for $t \geq 0$.

Absorption of the diffusion process S: properties

Theorem

- (i) For all $s \in D \setminus \mathbf{0}$, $\mathbb{P}_s(T_{\mathbf{A}} \wedge T_{\mathbf{a}} < T_{\mathbf{0}}) = 1$.
 - Extended Girsanov Theorem (Cattiaux et al. (2009)) $\mathbb{P}_s(T_{\mathbf{A}} \wedge T_{\mathbf{a_0}} < T_{\mathbf{0}}) = 1$ for all $s \in \mathcal{D}_1$.
 - Martingale argument to conclude in the neutral case.
 - Girsanov Theorem in the non-neutral case.
- (ii) For all $s \in D \setminus \partial D$, $\mathbb{P}_s(T_A < T_0) > 0$, and $\mathbb{P}_s(T_a < T_0) > 0$.
 - In the neutral case, $\mathbb{P}_s(T_{\mathsf{a}} < T_{\mathsf{0}}) = 1/2$ for all $s \in \mathsf{M}$.
 - Girsanov Theorem: $\mathbb{P}_s(T_{\mathbf{M}} < \infty) > 0$ for all $s \in \mathcal{D}$.
 - Strong Markov property to conclude.
 - Girsanov Theorem in the non-neutral case.

Quasi-stationary behavior

Theorem

- (i) There exists a unique distribution ν_1 on $D \setminus \partial D$ such that $\lim_{t \to \infty} \mathbb{P}_s(S_t \in E | T_{\partial D} > t) = \nu_1(E) \quad \forall s \in D \setminus \partial D.$
- (ii) There exists a unique distribution ν on $D \setminus \mathbf{0}$ such that $\lim_{t \to \infty} \mathbb{P}_s(S_t \in E | T_0 > t) = \nu(E) \quad \forall s \in D \setminus \partial D.$

 \Longrightarrow The law $\lim_{t\to\infty}\mathbb{P}(X_t\in.|N_t>0)$ is well-defined.

Numerical results 1: neutral case

Figure : Distribution of the proportion X_t of allele A in a neutral case, knowing that $N_t \neq 0$. In this figure, $\beta_i = 1 = \delta_i$, and $\alpha_{ij} = 0.1$ for all i, j.

Numerical results 2: overdominance

Figure : Distribution of the proportion X_t of allele A in an overdominance case, knowing that $N_t \neq 0$. $\beta_i = 1$ for all $i \neq 2$, $\beta_2 = 5$, $\delta_i = 0$ for all i, $\alpha_{ij} = 0.1$ for all (i,j), and T = 100.

Numerical results 3: separate niches

Figure : Distribution of the proportion X_t of allele A in a separate niches case, knowing that $N_t \neq 0$. $\beta_i = 1$, $\delta_i = 0$, $\alpha_{ii} = 0.1$ for all i, $\alpha_{ij} = 0$ for all $i \neq j$, and T = 2500.

New work and perspectives

- More alleles (joint work with Sylvie Méléard).
- What are the exact conditions for coexistence of the two alleles?

Bibliography

- Cattiaux, P., Collet, P., Lambert, A., Martinez, S., Méléard, S., and San Martín, J. (2009): Quasi-stationarity distributions and diffusion models in population dynamics. The Annals of Probability. 37:5:1926–1969
- Cattiaux, P., and Méléard, S. (2010): Competitive or weak competitive stochastic Lotka-Volterra systems conditioned on non-extinction. Journal of Mathematical Biology. 60:797–829.
- C.C.: Stochastic slow-fast dynamics and quasi-stationarity for diploid populations. Arxiv 1309.3405.