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Motivation, model and scaling
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Motivation

@ Consider a population of individuals that gets extinct a.s. in finite time
@ One gene, two alleles.

@ In a long-time scale, conditionally to the surviving of the population,
which allele will remain?

@ Can we observe a long-time coexistence of the two alleles?

Understand the quasi-stationary behavior of a diploid population.
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Model

o Diploid individuals.
@ 1 gene, 2 alleles, A and a: genotypes AA, Aa and aa.
@ 3-type logistic birth-and-death process with Mendelian reproduction:

(thz0):((21}723723)71:20)'

@ Population size at time t: N, = Z} + Z? + Z3.

Slow-fast stochastic dynamics and quasi-stationarity for diploid populations Camille Coron



Motivation, model and scaling
[e]e] ]o)

Birth and death rates

If Zt =z = (21,22, 3) € (Z4 )3 with n = z; + 2o + z3,

@ Diploid Mendelian reproduction:

b
)\1(2) = 71 (21)2 +z120 +

(22)?
4
o Competition and natural death:

p1(z) = z1(di + ci1z1 + 1222 + c1323)
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Scaling

@ Large population size assumption.
@ Population represented by the pure jump process:
ZK =Z/K € (Z+/K)?, K — +o0.

@ Scaling of demographic parameters and hypotheses:

bl = 7K + B;
diK:’YK+5i
K _ @
Cij —7

Z& — Zy inlaw,
K—o0
there exists C > 0 such that for all K € N*|E ((N(é()3> <C,

where v > 0 and Z is a (R )3-valued random variable.
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Hardy-Weinberg deviation, new variables

@ Deviation from Hardy-Weinberg equilibrium:

1,K 53,K 2,K
— 4Zt Zt B (Zt )2

YK
t 4NK

AAK AK
= NtK(Pt - (Pt )2)

AK aK _AaK

= Nf@p " p2" — pio")
K K

= NE(p?™" = (p?")?)

27K 7
2NK

o 271K + 72K = NMK = number of alleles A divided by K at time ¢,

o 273K 1 72K — NZK = number of alleles a divided by K at time t.

o X[ = = proportion of allele A at time t.

(ZtLKu Zt2’K7 ZL?’K) A (N1{<7XtK7 YtK) A (N?’K7 Nl:a7K7 YtK)
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Fast dynamics

Proposition

For all s,t >0, sup E((Y[))?) — 0 when K goes to infinity.
t<u<t+s

| \

Proof.
By Kolmogorov-forward equation,
dE ((Y[/)?

O

4

o YK is a fast variable and the population converges to Hardy-Weinberg
equilibrium.
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Slow-fast dynamics
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Slow dynamics

Theorem

The sequence of processes {((N{*, NZF), ¢ > 0)} k>0 converges in law in
D([0, T], (R.)?) toward a continuous-time diffusion process (N4, N?) such
that in the neutral case where ; = 8, 6; = 0, ajj = o for all i, j € {1,2,3}:

ApNja
dNA = NA dB} + NENE — -t _dB2
\/ N2+ Nz NA N?
dN? =

NA + N2
+<ﬁ_5_ LEL AP
Apja
1/ Na dBi — 7/\/’/\4';’\';\” dB?
t
NA + N2
ﬁ J— + >Nfdt
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Comparison with the haploid case 1

Diploid population:

A_ A 1
dNA— 1/ ,\,a’V dBl -+ [2y ﬁ 5—a
A a A a
o= | — 2T paggl_ [0y NN e 5 5— u) N2 dt
\| A+ Nz /va V2 2

Haploid Lotka-Volterra diffusion (P. Cattiaux & S. Méléard (2010)):

dNAP = \[2yNAP B + (B — 5 — (N + N2 NAP G
AN = \/2yNZ B2 + (B — 6 — a(N{M" + NZPY)NEP dt

NA 4 N2
—t t) NAdt
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Comparison with the haploid case 2

Diploid population:
dN; = (8 — 6 — aN;)Nedt + \/2yN,dB}

dX; = Mdlgf'
Ni

Haploid population (P. Cattiaux & S. Méléard (2010)):

dN! = (8 — 0 — aNMNPdt + /2y NP dW}

29X[ (1 — X

dW?2.
NE

dXxf =
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Long time behavior of (N, X) and change of variables

o Cattiaux, Collet, Lambert, Martinez, Méléard, San Martin (2009):
For all (n,x) € R x [0, 1], ]P’(nX)(Tg <o0)=1.

@ Change of variables:

1 [yN: arccos(2X; — 1)
S; = 5 €os (—\/5

> [N . (arccos(2X; — 1)
St = 5 sin < 7 .

Under symmetric assumptions of the competition parameters the
diffusion process S = ((S}, S2),t > 0) satisfies
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Diffusion coefficient

( w+%ln (sm( 2arctan< 2)))

_ (/3 5o ((51) (52)2)) (51)21(52)2
if St > 0

w + Zln (sin (\/§ (arctan (S—f) + w)))

wn

2

_ (5_5_ oy ((51)2 n (52)2» (s1) 1(52)2
if ST <0.




Quasi-stationary behavior
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Definition space, absorbing sets

S2
M
ag AO
o
N\
z\é\
\% (51152) = U)(nvx)
<l
arccos(2x—1)
T V2
2
S1
0:{51:5‘2:0} A:{S2:0}

Figure : Set D of the values taken by S;, for t > 0.
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Absorption of the diffusion process S: properties

(i) Forallse€ D\ O, Ps(Ta A Ta < Tg) =1.
o Extended Girsanov Theorem (Cattiaux et al. (2009))
Ps(Ta A Tay < Top) =1 for all s € Dy.
@ Martingale argument to conclude in the neutral case.
@ Girsanov Theorem in the non-neutral case.

(if) Forallse D\ 0D, Ps(Ta < Tg) >0, and Ps(Ta < Tp) > 0.
@ In the neutral case, Ps(Ty < Tg) = 1/2 for all s € M.
@ Girsanov Theorem: Ps(Tpm < o0) > 0 for all s € D.
@ Strong Markov property to conclude.
@ Girsanov Theorem in the non-neutral case.
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Quasi-stationary behavior

(i) There exists a unique distribution v; on D\ D such that
lim Py(S; € E|Top > t) = wi(E) Vs € D\ aD.

(/i) There exists a unique distribution v on D \ 0 such that
lim Py(S; € E|To > t) = v(E) Vs D\aD.
o0

= The law  lim P(X; € .|N; > 0) is well-defined.
t—o0
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Empirical distribution
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Figure : Distribution of the proportion X; of allele A in a neutral case, knowing
that Ny # 0. In this figure, §; =1 = ¢;, and aj; = 0.1 for all i, j.
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Empirical distribution
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Figure : Distribution of the proportion X; of allele A in an overdominance case,
knowing that Ny #0. ;= 1forall i #£2, 5 =5, 6; = 0 for all /, ajj = 0.1 for all
(i,7), and T = 100.
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Empirical distribution
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Figure : Distribution of the proportion X; of allele A in a separate niches case,
knowing that Ny #0. i =1, 6; =0, oy = 0.1 for all i, cyjj =0 for all i # j, and
T = 2500.
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New work and perspectives

@ More alleles (joint work with Sylvie Méléard).

@ What are the exact conditions for coexistence of the two alleles?
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