Coalescent trees of birth–death models & Applications to phylogenetics

Amaury Lambert

(with H. Alexander, R.S. Etienne, H. Morlon, T. Stadler)

Stochastic Models in Ecology, Evolution & Genetics Angers, 9–13 dec 2013

Outline

- 2 Coalescent Point Processes
- 3 Protracted Speciation
- **4** β and γ
- 5 Speciation by Genetic Differentiation

ciation β

Speciation by Genetic Differentiatio

Evolutionary Biology and Math

- Evolutionary biologists...
 - collect data : contemporary geno/phenotypes
 - identify patterns
 - postulate evolutionary processes responsible for these patterns.

...But since those processes can not be reproduced *in vivo*...

- We (mathematicians)...
 - propose simple models underlying the evolutionary processes
 - predict the patterns generated by these models
 - quantify the ability of competing processes to generate the observed patterns.

Understanding biodiversity patterns

- Why are there so many species in the tropics ?
- Why are there so few species in the oceans ?
- Why are some taxonomic groups so much richer than others ?
- Infer diversification processes to see how these processes depend on time, species traits, current diversity, taxonomic groups, geographic regions, habitats...

Birth-death models of genealogies/phylogenies

- We use birth-death models of diversification
- Where particles can be individuals or species (Nee et al *PNAS* 1992)
- Particles split into two new particles at rate b = birth (or speciation) rate
- Particles die at rate d = death (or extinction) rate
- $N_t :=$ nb particles at time t
- Particles may bear some trait *i*, and rates may depend on *t*, *N*_t, *i*,...

complete phylogeny

Assumptions on rates

Rates b(t, n, a, i) and d(t, n, a, i) may depend upon :

- **time** *t*
- **number** *n* of standing particles
- a **non-heritable trait** *a* (e.g., age)
- a heritable trait i
- Traits behave as iid Markov processes on each lineage
- Asymmetric birth = Mother keeps her trait
- Orientation = Daughter sprouts to the right

Outline

- 2 Coalescent Point Processes
- 3 Protracted Speciation
- **4** β and γ
- 5 Speciation by Genetic Differentiation

Reconstructed (or reduced) tree

- Goal. Use time-calibrated phylogenies to infer div processes
- By computing the likelihood of phylogenies (ML, MCMC) and estimating rates

Reconstructed tree = start with one particle at time 0, stop at time T, remove all lineages extinct by T.

Q1: <u>Can we characterize the distribution of the reconstructed</u> tree under a generalized birth–death model of diversification ? The CPP distribution (Popovic 2004, Aldous & Popovic 2005) A reference distribution on ultrametric, oriented trees with edge lengths

CPP = Coalescent Point Process = Oriented tree whose node depths H_1, H_2, \ldots , form a sequence of **iid random variables** killed at its first value larger than *T*.

The likelihood of a tree with node depths h_1, \ldots, h_{n-1} can be factorized as a product

$$L(h_1,...,h_{n-1}) = P(H > T) \prod_{i=1}^{n-1} f(h_i),$$

where f is the density of H.

Speciation by Genetic Differentiation

Simulating CPPs

b = b(t) and d = d(t, a) always produce CPP

Recall that t is time and a is any non-heritable trait.

Theorem (L. & Stadler 2013) If b = b(t) and d = d(t,a), then the reconstructed oriented tree is a CPP with typical node depth H whose distribution is given by

$$P(H > t) = \exp\left(-\int_{T-t}^{T} b(s)p(s)\,ds\right) \qquad t \in [0,T],$$

where p(t) denotes the probability that a particle born at time t has extant descendance by time T.

This still holds in the presence of bottlenecks = mass extinction events (fixed times, fixed probabilities).

CPP

Law of H from model parameters (1)

Set g(t,s) be the density at time *s* of the extinction time of a species born at time *t*.

Proposition (L. & Stadler 2013)

The function $F = 1/P(H > \cdot)$ is the unique solution to the following linear integro-differential equation

$$F'(t) = b(t) \left(F(t) - \int_{T-t}^T ds \ F(s) g(t,s) \right) \qquad t \ge 0,$$

with initial condition F(0) = 1.

Law of H from model parameters (2)

If $\mathbb{E}_{t,x}$ denote the expectation associated to the trait *X* started at time *t* in state *x*, then

$$g(t,s) = \int_{\mathbb{R}} \mathbf{v}_t(dx) \, \mathbf{u}_s(t,x) \qquad s \ge t,$$

where v_t is the initial trait ditribution for sp born at t and

$$u_s(t,x) := \mathbb{E}_{t,x}\left(d(s,X_s) \ e^{-\int_t^s dr \ d(r,X_r)}\right) \qquad s \ge t.$$

If X is a Markov process with generator L_t at time t, then by Feynman–Kac formula, u_s is the unique solution to

$$\frac{\partial u_s}{\partial t}(t,x) + L_t u_s(t,x) = d(t,x) \ u_s(t,x),$$

with terminal condition $u_s(s,x) = d(s,x)$.

Two special cases

• If b = b(t) and d = d(t), then

$$F(t) = 1 + \int_{T-t}^{T} ds b(s) e^{\int_{s}^{T} du (b-d)(u)}.$$

• If *b* is constant and d = d(a), then g(s,t) = g(t-s) $(g(a) = d(a) e^{-\int_0^a ds d(s)}$ if *a* the age), and

$$F' = b \left(F - F \star g \right),$$

with F(0) = 1. Equivalently, *F* is the unique non-negative function with Laplace transform

$$\int_0^\infty F(t) \, e^{-tx} \, dt = \frac{1}{\psi(x)},$$

where ψ is the Lévy exponent

$$\Psi(\lambda) = \lambda - \int_0^\infty b g(t) \left(1 - e^{-\lambda t}\right) dt \qquad x \ge 0.$$

Jumping contour of a tree

a) Binary tree with edge lengths and b) Jumping contour process of its truncation below time *T*.

Contour of a splitting tree

Theorem (L. (2010))

The jumping contour process of a splitting tree truncated below T is a strong Markov process.

In the time-homogeneous case, it is a Lévy process with Lévy density $bg(\cdot)$, without negative jumps and drift -1, reflected below T and killed upon hitting 0.

Application to the bird phylogeny With T. Stadler and H.K. Alexander

• Gamma distributed lifetime $(k, \theta > 0)$

$$g(a) = \Gamma(k)^{-1} \,\theta^{-k} a^{k-1} e^{-a/\theta}$$

- Exponential distribution is k = 1: age-independent ext rate
- Test on simulations : accurate ML estimates of b and $k\theta$
- MLE on *Aves* phylogeny = 9993 extant bird species (Jetz et al *Nature* 2012)
- Exponential model rejected ($p = 10^{-15}$)
- Shape parameter $k \gg 1$: extinction rate increases with age
- Average lifetime $k\theta = 15.26 My$
- Speciation rate $b = 0.108 My^{-1}$

Outline

- 2 Coalescent Point Processes
- 3 Protracted Speciation
- 5 Speciation by Genetic Differentiation

Protracted speciation (Rosindell et al 2010, Etienne & Rosindell 2012) With R.S. Etienne and H. Morlon

- Particles = Populations
- **Speciation stage** = non-heritable trait = Each population gradually diverges from mother species
 - Newborn populations are **incipient** = same species as mother population
 - Become **good** after some random time = new species
- Each species is represented by a single population

Protracted speciation (2)

- 4 extant populations at time *T*
- 3 extant species
- Species *b* is represented by Population 4
- Species *a* is represented by Population 2.

Protracted speciation (3)

Assume that the birth rate *b* does not depend on speciation stage. Theorem (Etienne, L. & Morlon 2013) *The reconstructed tree spanned by extant representative populations at T is a coalescent point process with node depth H^r*, where

$$P(H^{r} > t) = \exp\left(-\int_{T-t}^{T} b(s) (1 - p_{1}^{r}(s)) ds\right)$$

and $p_1^r(t)$ is the probability that a species born at time t does not have any good descending species that has extant descendance at time T.

Protracted speciation (4)

- Test on simulations : poor ML inference for each individual parameter
- Efficient inference of duration of speciation = waiting time before first descending good population
- Left : duration of speciation inferred in 46 bird clades (in My)

Outline

- Macroevolution Models
- 2 Coalescent Point Processes
- 3 Protracted Speciation

5 Speciation by Genetic Differentiation

More real data : Two statistics

- MLE of Beta-splitting (Aldous 1996)
- Pure birth model : $\beta = 0$
- Real trees are imbalanced : $\beta < 0$ (Blum & François 2006)

- Pure birth model : $\gamma = 0$
- Kingman coalescent has nodes closer to tips : γ > 0
- Real trees have nodes closer to the root : $\gamma < 0$ (McPeek 2008)

The URT distribution

 β and γ

- Protracted speciation models produce $\gamma < 0$, BUT $\beta \approx 0$
- CPP = Fast simulation + fast inference, BUT always $\beta \approx 0$
- All CPPs have the same topology in distribution
- This topology is called **URT = uniform distribution** on ranked **oriented** trees after ignoring the orientation (The Kingman coalescent tree follows URT but not CPP)
- Q2 : <u>What conditions on rates are necessary and sufficient to</u> produce CPP trees ? <u>URT trees ?</u>

FIGURE : Under the uniform distribution on ranked oriented trees, the probability of the tree in (a) is 1/(n-1)! = 1/24; under the uniform distribution on ranked labelled trees, the probability of the tree in (c) is $2^{n-1}/n!(n-1)! = 1/180$; under URT, the probability of the tree τ in (b) is $2^{n-1-c}/(n-1)! = 1/6$.

Answer to Q2

Proposition (L. & Stadler 2013)

- **1** Reconstructed trees always follow CPP IFF b = b(t) and d = d(t, a)
- 2 Reconstructed tree shapes always follow URT IFF b = b(t,n) and d = d(t,n,a)

Remark. As soon as b = b(t,n) and d = d(t,n,a), we will estimate $\beta \approx 0$.

FIGURE : Here, d = 0 and $b(a) = \mathbb{1}_{[1-\varepsilon,1]}(a)$, where a is the age.

⇒ Age-dependent speciation rates can produce caterpillar trees w.h.p., and so do NOT produce URT trees in general.

FIGURE : Species can bear the heritable trait i = 0 or 1. All sp bear trait 0 except (the anc and) when born from a sp with trait 1 and age a in $[1 - \varepsilon, 1]$. Here b = 1, d(1) = 0 and $d(0) \gg -\log(\varepsilon)/\varepsilon$.

 \implies Heritable trait-dependent extinction rates can produce caterpillar trees w.h.p. and so do NOT produce URT trees in general.

b = b(t,n) and d = d(t,n,a) always produce URT

- If b = b(t,n) and d = d(t,n,a), then the law of the oriented tree is invariant under regrafting of subtrees (same time, different edge)
- The law of the oriented reconstructed tree is invariant under permutation of edges
- The reconstructed tree shape always follows URT.

FIGURE : Here, d = 0 and $b = 1 + B \mathbb{1}_{n=2}$ with $B \gg 1$. Alternatively b = 1 and $d(n) = D \mathbb{1}_{n=2}$, with $D \gg 1$.

⇒ Rates dependent on the nb of species can produce trees where the 1st and 2nd speciations are arbitrarily close w.h.p., and so do NOT produce CPP trees in general.

Answer to Q2

Proposition (L. & Stadler 2013)

- **1** Reconstructed trees always follow CPP IFF b = b(t) and d = d(t, a)
- 2 Reconstructed tree shapes always follow URT IFF b = b(t,n) and d = d(t,n,a)

Q3: Can we design tractable models of diversification with both $\beta < 0$ and $\gamma < 0$?

Outline

- Macroevolution Models
- 2 Coalescent Point Processes
- 3 Protracted Speciation
- **4** β and γ
- **5** Speciation by Genetic Differentiation

Speciation by genetic differentiation (1) Work in progress with M. Manceau and H. Morlon

- Start with a birth–death tree (constant rates *b* and *d*, but...)
- Add Poissonian mutations rate θ , infinite-allele model
- **Species = minimal monophyletic taxon** such that any 2 tips with the same allele belong to the same species
- SGD = Speciation by genetic differentiation = individual-based version of protracted speciation

- A node on the genealogy is phylogenetic (= appears on the phylogeny) if
 - (i) The previous node is phylogenetic
 - (ii) All tips separated by this node carry different alleles
- The first node is phylogenetic if it satisfies (ii)

The phylogeny is generated by a 3-type time-inhomogeneous branching process

- a lineage is in state 1 if the allele it is carrying is NOT represented at *T*
- a lineage is in state 0 if the allele it is carrying is represented at T
- a lineage in state 0 gets frozen into one single phylogenetic lineage when it splits into two 0-lineages

Speciation by genetic differentiation (4)

Speciation by Genetic Differentiation

- Branching process representation : fast simulation
- Likelihood computation by peeling algorithm
- Tests by simulations : accurate ML estimates of θ and b-d
- Inference from Cetaceans (Steeman et al Syst Biol 2009) generates realistic values of β, γ

Speciation by genetic differentiation (5)

Institutions

• Stochastic Models for the Inference of Life Evolution (SMILE)

 \subset Center for Interdisciplinary Research in Biology \subset Collège de France

• Stochastics & Biology group

⊂ Laboratoire de Probabilités et Modèles Aléatoires ⊂ UPMC University Paris 06

• ANR Modèles Aléatoires eN Écologie, Génétique, Évolution (MANEGE)

SMILE : A cross-disciplinary group in CIRB

- CIRB = Center for Interdisciplinary Research in Biology (Collège de France)
- SMILE = Stochastic Models for the Inference of Life Evolution