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Example of a causal question

People with sleep problems tend to be more depressed than people
without sleep problems
Do sleep problems cause depression?

Possible scenarios:

sleep problems depression

sleep problems depression

stress

sleep problems depression

Assumptions:
No hidden variables

No cyclic dependencies
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Causal inference: motivated by biology

Does depression cause sleep problems?
Does a certain drug cure sleep problems?

Which proteins regulate the expression of a specific gene?
Type of regulation: inhibition, activation?
Strength of effect?

Aim: detection of causal networks modelled by directed acyclic graphs
(DAGs)
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Causal model: example

Directed acyclic graph
(DAG) D of causal
dependencies:

1

2 3

4

Random variables X1, . . . ,X4: expression
levels of 4 genes

Joint density

f (x) = f (x1)f (x2|x1)f (x3|x1)f (x4|x2, x3)

f has Markov property of D

Statements encoded in causal model
Conditional independence relations between random variables
(Markov property)
Effects of forcing random variables to chosen values (intervention
effects)
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Intervention: example

Random variables:

X1: exp. level of gene 1
X2: exp. level of gene 2
X3: exp. level of gene 3
X4: exp. level of gene 4

Intervention at X2: silencing gene 2

1

2 3

4

True DAG D

Observational density: f (x) = f (x1)f (x2|x1)f (x3|x1)f (x4|x2, x3)

Interventional density: f (x |do(X2 = U)) = f (x1)f̃ (x2)f (x3|x1)f (x4|x2, x3)
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Example: estimating effect of gene knockouts in yeast

(Maathuis et al., 2010)
n = 63 measurements of X1, . . . ,Xp (p = 5361): gene expression
levels in yeast
Question: which genes are strongly affected by the knockout of other
genes?
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Example: estimating effect of gene knockouts in yeast

“Classical” approach: regression: Xi =
∑
j 6=i

βjXj + ε

|βj | measures change of Xi as function of Xj when keeping all other
variables fixed.

Not very realistic
I complex interplay between genes of an organism
I silencing one gene affects many others
I indirect regulation paths should be accounted for

Causal approach:
I estimate directed acyclic graph (DAG) of direct influences
I graph as a whole can also model indirect influences
I more realistic scenario
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Example: estimating effect of gene knockouts in yeast

Data set of Hughes et al. (2000):
expression levels of 5361 yeast genes,
originating from. . .

63 wildtype cells
234 mutants

Procedure of Maathuis et al. (2010):
“Knockout effect”: difference in
expression of one gene in
response to knockout of another
gene
Find strongest 5% of “knockout
effects” in mutants data
Predict strongest α% of
knockout effects based on model
fitted to wildtype data
Compare predictions of different
methods with ROC curves
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Example: estimating effect of gene knockouts in yeast

Indeed: causal method outperforms classical regression models!

Figure 1
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Markov equivalence

A probability density in general obeys the Markov properties of several
DAGs; those DAGs are called Markov equivalent
 limited identifiability under observational data

1

2 3

4

D

1
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4

D1

1

2 3

4

D2

On the other hand, intervention effects do depend on the DAG
 improved identifiability of causal models under interventional data

Alain Hauser (University of Bern) Causal inference from interventions Angers 2013 10 / 29



Markov equivalence

A probability density in general obeys the Markov properties of several
DAGs; those DAGs are called Markov equivalent
 limited identifiability under observational data

1

2 3

4

D

1

2 3

4

D1

1

2 3

4

D2

On the other hand, intervention effects do depend on the DAG
 improved identifiability of causal models under interventional data

Alain Hauser (University of Bern) Causal inference from interventions Angers 2013 10 / 29



Interventional Markov equivalence

Definition (Interventional Markov equivalence)
Two DAGs D1 and D2 are interventionally Markov equivalent for a
given set of intervention targets if they

encode the same interventional densities
are statistically indistinguishable under intervention experiments
performed at the specified intervention targets.

Observational setting is a special case of an interventional setting
∃ purely graph theoretic criterion for interventional Markov
equivalence (Hauser and Bühlmann, 2012)
Reproduces classical criterion for observational Markov equivalence of
Verma and Pearl (1990):
DAGs D1 and D2 observationally Markov equivalent ⇔ D1 and D2
have same skeleton and v-structures.
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Interventional Markov equivalence: example
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E{∅}(D)

Observational Markov equivalence class of D with corresponding essential
graph
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Interventional Markov equivalence: example

1
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E{∅,{2}}(D)

Interventional Markov equivalence class of D assuming we can measure
observational data
interventional data from an intervention at X2
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Interventional essential graph

Interventional essential graph EI(D) of a DAG D: partially directed
graph

having the same skeleton as D
with a directed edge where the corresponding arrows of all DAGs
interventionally equivalent to D have the same orientation
with an undirected edge where the orientation of the corresponding
arrow is not common to all DAGs interventionally equivalent to D

I: set of intervention targets

Interventional essential graph: unique representation of interventional
Markov equivalence class
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Characterization of I-essential graphs

Theorem (Hauser and Bühlmann, 2012)

A graph G is the I-essential graph of a DAG D if and only if

1 G is a chain graph;

2 each chain component of G is chordal;

3 a b c is no induced subgraph of G;

4 G has no line a b for which there exists some I ∈ I such that
|I ∩ {a, b}| = 1;

5 every arrow a b ∈ G is strongly I-protected.

Reproduces a result of Andersson et al. (1997) for the observational case
I = {∅}.
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Interventional Markov equivalence: summary

Causal models not fully identifiable from observational data
Interventional data improves identifiability

Graph theoretic criterion for interventional Markov equivalence of two
DAGs
Interventional essential graphs: representation of I-Markov
equivalence classes for visualization and algorithmic handling

Next part: learning I-equivalence classes from data
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Gaussian causal model

Gaussian causal model: X ∼ N (0,Σ); density has Markov property of
some DAG D
Markov property translates to a set of linear structural equations:

Xk =

p∑
k=1

βkjXj + εk , εk
indep.∼ N (0, σ2

k), 1 ≤ k ≤ p

with βkj = 0 if there is no arrow from j to k in the DAG D.

Family of models parameterized by the “edge
weights” B := (βkj)

p
k,j=1 and the error variances

σ2 := (σ2
1, . . . , σ

2
p).

1

2 3

4

β21 β31

β42 β43
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Likelihood for given DAG

Calculation of maximum likelihood estimator (MLE) for edge
weights B̂ and error variances σ̂2 for jointly observational and
interventional data: decouples into optimization over single
structural equations
(β̂kj)

p
j=1, σ̂

2
k : given by least-squares regression of Xk ∼ Xpa(k)

(measurements of one variable vs. its “parents”), ignoring samples
produced by intervention at Xk (Hauser and Bühlmann, 2013)

 parameter estimation: analytical calculation of MLE
 model selection: efficient calculation of Bayesian information
criterion (BIC)
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Learning causal models

For fix p, optimization of the BIC leads to consistent model selection
in the limit n→∞ (Hauser and Bühlmann, 2013)

Problem: model selection by optimizing BIC is computationally
intrinsically hard (NP-hard; Chickering, 1996)

Replacing `0 by `1 regularization does not help;
reason: DAG constraint (non-convex constraint!)

Solution: causal inference via greedy algorithm
on space of I-essential graphs  Greedy
Interventional Equivalence Search (GIES): natural
generalization of the Greedy Equivalence Search
(GES) algorithm of Chickering (2002) to
interventional data

X1 X2

β21

β12

β12

β21
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GIES: example step

Main idea of GIES: greedy optimization of BIC by traversing space of
I-essential graphs
Small steps: proceed from one I-essential graph to a neighbor
Search directions: forward (adding edges), backward (removing
edges), turning (reversing edges)

Possible forward step:

1

2 3

4

G

1

2 3

4

Drepresentative

1

2 3

4

D ′neighbor

1

2 3

4

G ′ess. graph
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Search space: DAGs vs. essential graphs
Neglecting (interventional) Markov equivalence narrows search space
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DREAM4 in silico network challenge

Goal: learn structure of gene regulatory network, predict intervention
effects
Data: realistic in silico steady-state and time series data,
observational and interventional data points
Our proceeding: cross-validation of gene expression levels under
interventions.
Compare CV-values to those of algorithms ignoring interventional
nature of data
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DREAM4 challenge: results

∆MSE := MSE of competitor−
MSE of GIES
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Conclusions:
slight advantage over competing methods
estimation sensitive to model misspecification: acyclicity and normality
assumptions violated
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Simulation study: structure learning
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Structural Hamming distance between true DAG and estimated
interventional essential graph (n = 1000, p = 20).
Structural Hamming distance (SHD): number of edges to be added,
removed, or reversed to get from one graph to a different one.
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Simulation study: structure learning
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SHD between estimated and true interventional essential graphs (p = 20).
Upper part: observational data; lower part: k = 12 intervention targets of
size 4.
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Learning causal models: summary

Gaussian causal models: analytical calculation of MLE for given DAG;
p independent regression problems
Consistent model selection (structure learning) through maximization
of BIC

Structure learning computationally feasible with greedy algorithm
Greedy algorithm keeps up with dynamic programming solution at
much lower computational cost
Neglection of interventional Markov equivalence leads to worse
structure learning
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Outlook and future work

Estimators suitable for high-dimensional data

More complex (and hence realistic) models:
I nonlinear dependence of a variable from its causal parents
I cyclic models
I time series data

Accounting for hidden variables, confounders, etc.

Merci pour votre attention !
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