Causal inference from interventional data

Alain Hauser

Department of Biology, Bioinformatics, University of Bern

December 10, 2013, Angers

Joint work with Peter Bühlmann

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

sleep problems \longrightarrow depression sleep problems \longleftarrow depression

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

sleep problems \longrightarrow depression

 $\mathsf{sleep} \ \mathsf{problems} \longleftarrow \mathsf{depression}$

Assumptions:

No hidden variables

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

Assumptions:

- No hidden variables
- No cyclic dependencies

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?
- Type of regulation: inhibition, activation?
- Strength of effect?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?
- Type of regulation: inhibition, activation?
- Strength of effect?

Aim: detection of **causal networks** modelled by **directed acyclic graphs** (DAGs)

Causal model: example

Directed acyclic graph (**DAG**) *D* of causal dependencies:

Causal model: example

Directed acyclic graph (**DAG**) *D* of causal dependencies:

Random variables X_1, \ldots, X_4 : expression levels of 4 genes

Joint density

$$f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$$

f has Markov property of D

Causal model: example

Directed acyclic graph (**DAG**) *D* of causal dependencies:

Random variables X_1, \ldots, X_4 : expression levels of 4 genes

Joint density

 $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

f has Markov property of D

Statements encoded in causal model

- Conditional independence relations between random variables (Markov property)
- Effects of forcing random variables to chosen values (intervention effects)

- 4 回 ト - 4 回 ト

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

Intervention at X_2 : silencing gene 2

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

Intervention DAG $D^{(\{2\})}$

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

Interventional density: $f(x|\operatorname{do}(X_2 = U)) = f(x_1)\tilde{f}(x_2)f(x_3|x_1)f(x_4|x_2,x_3)$

(Maathuis et al., 2010)

- n = 63 measurements of X₁,..., X_p (p = 5361): gene expression levels in yeast
- Question: which genes are strongly affected by the knockout of other genes?

• "Classical" approach: regression: $X_i = \sum_{i \neq i} \beta_i X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when keeping all other variables fixed.

• "Classical" approach: regression: $X_i = \sum_{j \neq i} \beta_j X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when keeping all other variables fixed.

- Not very realistic
 - complex interplay between genes of an organism
 - silencing one gene affects many others
 - indirect regulation paths should be accounted for

• "Classical" approach: regression: $X_i = \sum_{j \neq i} \beta_j X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when keeping all other variables fixed.

- Not very realistic
 - complex interplay between genes of an organism
 - silencing one gene affects many others
 - indirect regulation paths should be accounted for

Causal approach:

- estimate directed acyclic graph (DAG) of direct influences
- graph as a whole can also model indirect influences
- more realistic scenario

Data set of Hughes et al. (2000): expression levels of 5361 yeast genes, originating from...

- 63 wildtype cells
- 234 mutants

Procedure of Maathuis et al. (2010):

- "Knockout effect": difference in expression of one gene in response to knockout of another gene
- Find strongest 5% of "knockout effects" in mutants data
- Predict strongest α% of knockout effects based on model fitted to wildtype data
- Compare predictions of different methods with ROC curves

Indeed: causal method outperforms classical regression models!

Markov equivalence

A probability density in general obeys the Markov properties of **several** DAGs; those DAGs are called Markov equivalent \rightarrow limited identifiability under observational data

Markov equivalence

A probability density in general obeys the Markov properties of **several** DAGs; those DAGs are called **Markov equivalent** \rightarrow **limited identifiability** under observational data

On the other hand, intervention effects **do** depend on the DAG ~> **improved identifiability** of causal models under interventional data

Interventional Markov equivalence

Definition (Interventional Markov equivalence)

Two DAGs D_1 and D_2 are interventionally Markov equivalent for a given set of intervention targets if they

- encode the same interventional densities
- are statistically indistinguishable under intervention experiments performed at the specified intervention targets.

Interventional Markov equivalence

Definition (Interventional Markov equivalence)

Two DAGs D_1 and D_2 are interventionally Markov equivalent for a given set of intervention targets if they

- encode the same interventional densities
- are statistically indistinguishable under intervention experiments performed at the specified intervention targets.
- Observational setting is a special case of an interventional setting
- ∃ purely graph theoretic criterion for interventional Markov equivalence (Hauser and Bühlmann, 2012)
- Reproduces classical criterion for observational Markov equivalence of Verma and Pearl (1990):
 DAGs D₁ and D₂ observationally Markov equivalent ⇔ D₁ and D₂ have same skeleton and v-structures.

Interventional Markov equivalence: example

Observational Markov equivalence class of *D* with corresponding essential graph

Interventional Markov equivalence: example

Interventional Markov equivalence class of D assuming we can measure

- observational data
- interventional data from an intervention at X_2

Interventional essential graph

Interventional essential graph $\mathcal{E}_{\mathcal{I}}(D)$ of a DAG D: partially directed graph

- having the same skeleton as D
- with a **directed edge** where the corresponding arrows of all DAGs interventionally equivalent to *D* have the same orientation
- with an **undirected edge** where the orientation of the corresponding arrow is *not* common to all DAGs interventionally equivalent to *D*
- $\mathcal{I}:$ set of intervention targets

Interventional essential graph: unique representation of interventional Markov equivalence class

Characterization of \mathcal{I} -essential graphs

Theorem (Hauser and Bühlmann, 2012)

A graph G is the I-essential graph of a DAG D if and only if

- G is a chain graph;
- each chain component of G is chordal;
- **3** $a \rightarrow b c$ is no induced subgraph of G;
- G has no line a b for which there exists some $I \in \mathcal{I}$ such that $|I \cap \{a, b\}| = 1;$
- **(**) every arrow $a \rightarrow b \in G$ is strongly \mathcal{I} -protected.

Reproduces a result of Andersson et al. (1997) for the observational case $\mathcal{I} = \{\emptyset\}.$

イヨト イヨト イヨ

Characterization of \mathcal{I} -essential graphs

Theorem (Hauser and Bühlmann, 2012)

A graph G is the \mathcal{I} -essential graph of a DAG D if and only if

G is a chain graph;

G is a chain graph;
each chain component of G is chaldetail
a → b - c is no induced in Call detail
G has no line a - L technic there exists some l ∈ I such that $|I \cap \{a, b\}| = 1;$

() every arrow $a \rightarrow b \in G$ is strongly \mathcal{I} -protected.

Reproduces a result of Andersson et al. (1997) for the observational case $\mathcal{I} = \{\emptyset\}.$

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- Interventional data improves identifiability

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- Interventional data improves identifiability
- Graph theoretic criterion for interventional Markov equivalence of two DAGs
- Interventional essential graphs: representation of \mathcal{I} -Markov equivalence classes for visualization and algorithmic handling

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- Interventional data improves identifiability
- Graph theoretic criterion for interventional Markov equivalence of two DAGs
- Interventional essential graphs: representation of $\mathcal{I}\text{-}\mathsf{Markov}$ equivalence classes for visualization and algorithmic handling

• Next part: learning \mathcal{I} -equivalence classes from data

Gaussian causal model

- Gaussian causal model: X ~ N(0, Σ); density has Markov property of some DAG D
- Markov property translates to a set of linear structural equations:

$$X_k = \sum_{k=1}^{p} \beta_{kj} X_j + \varepsilon_k, \quad \varepsilon_k \stackrel{\text{indep.}}{\sim} \mathcal{N}(0, \sigma_k^2), \quad 1 \le k \le p$$

with $\beta_{kj} = 0$ if there is no arrow from j to k in the DAG D.

Gaussian causal model

- Gaussian causal model: X ~ N(0, Σ); density has Markov property of some DAG D
- Markov property translates to a set of linear structural equations:

$$X_k = \sum_{k=1}^{p} \beta_{kj} X_j + \varepsilon_k, \quad \varepsilon_k \stackrel{\text{indep.}}{\sim} \mathcal{N}(0, \sigma_k^2), \quad 1 \le k \le p$$

with $\beta_{kj} = 0$ if there is no arrow from j to k in the DAG D.

• Family of models parameterized by the "edge weights" $B := (\beta_{kj})_{k,j=1}^{p}$ and the error variances $\sigma^{2} := (\sigma_{1}^{2}, \dots, \sigma_{p}^{2}).$

Likelihood for given DAG

- Calculation of maximum likelihood estimator (MLE) for edge weights \hat{B} and error variances $\hat{\sigma}^2$ for jointly observational and interventional data: decouples into optimization over single structural equations
- (β_{kj})^p_{j=1}, σ²_k: given by least-squares regression of X_k ~ X_{pa(k)} (measurements of one variable vs. its "parents"), ignoring samples produced by intervention at X_k (Hauser and Bühlmann, 2013)

Likelihood for given DAG

- Calculation of maximum likelihood estimator (MLE) for edge weights \hat{B} and error variances $\hat{\sigma}^2$ for jointly observational and interventional data: decouples into optimization over single structural equations
- (β_{kj})^p_{j=1}, σ²_k: given by least-squares regression of X_k ~ X_{pa(k)} (measurements of one variable vs. its "parents"), ignoring samples produced by intervention at X_k (Hauser and Bühlmann, 2013)
 → parameter estimation: analytical calculation of MLE
 → model selection: efficient calculation of Bayesian information criterion (BIC)

 For fix p, optimization of the BIC leads to consistent model selection in the limit n→∞ (Hauser and Bühlmann, 2013)

- For fix p, optimization of the BIC leads to consistent model selection in the limit n→∞ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)

- For fix p, optimization of the BIC leads to consistent model selection in the limit n→∞ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)
- Replacing l₀ by l₁ regularization does not help;
 reason: DAG constraint (non-convex constraint!)

- For fix p, optimization of the BIC leads to consistent model selection in the limit n→∞ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)
- Replacing ℓ_0 by ℓ_1 regularization does not help; reason: **DAG constraint** (non-convex constraint!)
- Solution: causal inference via greedy algorithm on space of *I*-essential graphs → Greedy Interventional Equivalence Search (GIES): natural generalization of the Greedy Equivalence Search (GES) algorithm of Chickering (2002) to interventional data

不同下 不至下 不至下

- \bullet Main idea of GIES: greedy optimization of BIC by traversing space of $\mathcal{I}\text{-essential graphs}$
- Small steps: proceed from one \mathcal{I} -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

- \bullet Main idea of GIES: greedy optimization of BIC by traversing space of $\mathcal{I}\text{-essential graphs}$
- \bullet Small steps: proceed from one $\mathcal{I}\text{-essential}$ graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- \bullet Main idea of GIES: greedy optimization of BIC by traversing space of $\mathcal{I}\text{-essential graphs}$
- \bullet Small steps: proceed from one $\mathcal{I}\text{-essential}$ graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- \bullet Main idea of GIES: greedy optimization of BIC by traversing space of $\mathcal{I}\text{-essential graphs}$
- Small steps: proceed from one \mathcal{I} -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- \bullet Main idea of GIES: greedy optimization of BIC by traversing space of $\mathcal{I}\text{-essential graphs}$
- Small steps: proceed from one \mathcal{I} -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

20 / 29

Neglecting (interventional) Markov equivalence narrows search space

Angers 2013 21 / 29

Neglecting (interventional) Markov equivalence narrows search space

Neglecting (interventional) Markov equivalence narrows search space

Neglecting (interventional) Markov equivalence narrows search space

Neglecting (interventional) Markov equivalence narrows search space

21 / 29

DREAM4 in silico network challenge

- Goal: learn structure of gene regulatory network, predict intervention effects
- Data: realistic *in silico* steady-state and time series data, observational and interventional data points
- Our proceeding: **cross-validation** of gene expression levels under interventions.
- Compare CV-values to those of algorithms ignoring interventional nature of data

DREAM4 challenge: results

Conclusions:

- slight advantage over competing methods
- estimation sensitive to model misspecification: acyclicity and normality assumptions violated

Simulation study: structure learning

Structural Hamming distance between true DAG and estimated interventional essential graph (n = 1000, p = 20). Structural Hamming distance (SHD): number of edges to be added, removed, or reversed to get from one graph to a different one.

Alain Hauser (University of Bern)

Causal inference from interventions

Simulation study: structure learning

SHD between estimated and true interventional essential graphs (p = 20). Upper part: observational data; lower part: k = 12 intervention targets of size 4.

Alain Hauser (University of Bern)

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG; *p* independent regression problems
- Consistent model selection (structure learning) through maximization of BIC

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG;
 p independent regression problems
- Consistent model selection (structure learning) through maximization of BIC
- Structure learning computationally feasible with greedy algorithm

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG;
 p independent regression problems
- Consistent model selection (structure learning) through maximization of BIC
- Structure learning computationally feasible with greedy algorithm
- Greedy algorithm keeps up with dynamic programming solution at much lower computational cost
- Neglection of interventional Markov equivalence leads to worse structure learning

• Estimators suitable for high-dimensional data

э

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
 - nonlinear dependence of a variable from its causal parents
 - cyclic models
 - time series data

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
 - nonlinear dependence of a variable from its causal parents
 - cyclic models
 - time series data
- Accounting for hidden variables, confounders, etc.

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
 - nonlinear dependence of a variable from its causal parents
 - cyclic models
 - time series data
- Accounting for hidden variables, confounders, etc.

Merci pour votre attention !

References I

- S.A. Andersson, D. Madigan, and M.D. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. *Ann. Stat.*, 25(2):505–541, 1997.
- D.M. Chickering. Learning Bayesian networks is NP-complete. *Learning from data: Artificial intelligence and statistics V*, 112:121–130, 1996.
- D.M. Chickering. Optimal structure identification with greedy search. *JMLR*, 3(3): 507–554, 2002.
- A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. JMLR, 13:2409–2464, 2012.
- A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation of corresponding Markov equivalence classes of directed acyclic graphs. *Submitted*, 2013.
- T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A. Bennett, E. Coffey, H. Dai, Y.D. He, M.J. Kidd, A.M. King, M.R. Meyer, D. Slade, P.Y. Lum, S.B. Stepaniants, D.D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S.H. Friend. Functional Discovery via a Compendium of Expression Profiles. *Cell*, 102(1):109–126, 2000. ISSN 0092-8674.
- M.H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann. Predicting causal effects in large-scale systems from observational data. *Nature Methods*, 7(4):247–248, 2010.

References II

T. Verma and J. Pearl. On the equivalence of causal models. In UAI 1990, pages 220–227, 1990.

B> B

A (1) > A (1) > A