Causal inference from interventional data

Alain Hauser

Department of Biology, Bioinformatics, University of Bern

December 10, 2013, Angers

Joint work with Peter Bühlmann

 QQ

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

sleep problems \longrightarrow depression sleep problems \longleftarrow depression

 QQQ

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

sleep problems \longrightarrow depression

sleep problems \longleftarrow depression

Assumptions:

No hidden variables

- People with sleep problems tend to be more depressed than people without sleep problems
- Do sleep problems cause depression?

Possible scenarios:

Assumptions:

- No hidden variables
- No cyclic dependencies

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?
- Type of regulation: inhibition, activation?
- Strength of effect?

- Does depression cause sleep problems?
- Does a certain drug cure sleep problems?
- Which proteins regulate the expression of a specific gene?
- Type of regulation: inhibition, activation?
- Strength of effect?

Aim: detection of causal networks modelled by directed acyclic graphs (DAGs)

Causal model: example

Directed acyclic graph (DAG) D of causal dependencies:

4 D F

 QQ

Causal model: example

Directed acyclic graph (DAG) D of causal dependencies:

Random variables X_1, \ldots, X_4 : expression levels of 4 genes

Joint density

 $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

 \leftarrow \Box

f has Markov property of D

Causal model: example

Directed acyclic graph (DAG) D of causal dependencies:

Random variables X_1, \ldots, X_4 : expression levels of 4 genes

Joint density

 $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2,x_3)$

f has Markov property of D

Statements encoded in causal model

- Conditional independence relations between random variables (Markov property)
- **•** Effects of forcing random variables to chosen values (intervention effects)

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2, x_3)$

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

1 2) (3 4

Intervention at X_2 : silencing gene 2

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2, x_3)$

Intervention: example

Random variables:

 X_1 : exp. level of gene 1 X_2 : exp. level of gene 2 X_3 : exp. level of gene 3 X_4 : exp. level of gene 4

Intervention DAG $D^{(\{2\})}$

Observational density: $f(x) = f(x_1)f(x_2|x_1)f(x_3|x_1)f(x_4|x_2, x_3)$

Interventional density: $f(x|\text{do}(X_2 = U)) = f(x_1)\tilde{f}(x_2)f(x_3|x_1)f(x_4|x_2,x_3)$

(Maathuis et al., 2010)

- $n = 63$ measurements of X_1, \ldots, X_p ($p = 5361$): gene expression levels in yeast
- Question: which genes are strongly affected by the knockout of other genes?

"Classical" approach: regression: $X_i = \sum_i$ j≠i $\beta_j X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when \boldsymbol{k} eeping all other variables fixed.

つひひ

"Classical" approach: regression: $X_i = \sum_i$ j≠i $\beta_j X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when \boldsymbol{k} eeping all other variables fixed.

- Not very realistic
	- \triangleright complex interplay between genes of an organism
	- \blacktriangleright silencing one gene affects many others
	- \triangleright indirect regulation paths should be accounted for

∽≏∩

"Classical" approach: regression: $X_i = \sum_i$ j≠i $\beta_j X_j + \varepsilon$

 $|\beta_j|$ measures change of X_i as function of X_j when \boldsymbol{k} eeping all other variables fixed.

- Not very realistic
	- \triangleright complex interplay between genes of an organism
	- \blacktriangleright silencing one gene affects many others
	- \triangleright indirect regulation paths should be accounted for

Causal approach:

- \triangleright estimate directed acyclic graph (DAG) of direct influences
- \triangleright graph as a whole can also model indirect influences
- \blacktriangleright more realistic scenario

つへへ

Data set of Hughes et al. (2000): expression levels of 5361 yeast genes, originating from. . .

- 63 wildtype cells
- 234 mutants

Procedure of Maathuis et al. (2010):

- "Knockout effect": difference in expression of one gene in response to knockout of another gene
- Find strongest 5% of "knockout" effects" in mutants data
- Predict strongest α % of knockout effects based on model fitted to wildtype data
- Compare predictions of different methods with ROC curves

Indeed: causal method outperforms classical regression models!

Markov equivalence

A probability density in general obeys the Markov properties of several DAGs; those DAGs are called Markov equivalent \rightsquigarrow limited identifiability under observational data

Markov equivalence

A probability density in general obeys the Markov properties of several DAGs; those DAGs are called Markov equivalent \rightsquigarrow limited identifiability under observational data

On the other hand, intervention effects do depend on the DAG \rightarrow improved identifiability of causal models under interventional data

つひひ

Interventional Markov equivalence

Definition (Interventional Markov equivalence)

Two DAGs D_1 and D_2 are interventionally Markov equivalent for a given set of intervention targets if they

- **•** encode the same interventional densities
- are statistically indistinguishable under intervention experiments performed at the specified intervention targets.

つひひ

Interventional Markov equivalence

Definition (Interventional Markov equivalence)

Two DAGs D_1 and D_2 are interventionally Markov equivalent for a given set of intervention targets if they

- **•** encode the same interventional densities
- are statistically indistinguishable under intervention experiments performed at the specified intervention targets.
- Observational setting is a special case of an interventional setting
- ∃ purely graph theoretic criterion for interventional Markov equivalence (Hauser and Bühlmann, 2012)
- Reproduces classical criterion for observational Markov equivalence of Verma and Pearl (1990): DAGs D_1 and D_2 observationally Markov equivalent $\Leftrightarrow D_1$ and D_2 have same skeleton and v-structures.

Interventional Markov equivalence: example

Observational Markov equivalence class of D with corresponding essential graph

Interventional Markov equivalence: example

Interventional Markov equivalence class of D assuming we can measure

- **o** observational data
- interventional data from an intervention at X_2

Interventional essential graph

Interventional essential graph $\mathcal{E}_I(D)$ of a DAG D: partially directed graph

- having the same skeleton as D
- with a directed edge where the corresponding arrows of all DAGs interventionally equivalent to D have the same orientation
- with an **undirected edge** where the orientation of the corresponding arrow is not common to all DAGs interventionally equivalent to D
- \mathcal{I} : set of intervention targets

Interventional essential graph: unique representation of interventional Markov equivalence class

Characterization of $\mathcal I$ -essential graphs

Theorem (Hauser and Bühlmann, 2012)

A graph G is the I-essential graph of a DAG D if and only if

- **1** G is a chain graph;
- **2** each chain component of G is chordal;
- \bullet a \rightarrow b \leftarrow c is no induced subgraph of G;
- \bullet G has no line a \to b for which there exists some $I \in \mathcal{I}$ such that $|I \cap \{a, b\}| = 1;$
- **■** every arrow $a \rightarrow b \in G$ is strongly *I*-protected.

Reproduces a result of Andersson et al. (1997) for the observational case $\mathcal{I} = \{\emptyset\}.$

Characterization of $\mathcal I$ -essential graphs

Theorem (Hauser and Bühlmann, 2012)

A graph G is the I -essential graph of a DAG D if and only if

1 G is a chain graph;

2 each chain component of G is c^1 , \bigwedge

3 a \rightarrow b \rightarrow c is no induced subgraph of G;

9 G is a chain graph;

9 each chain component of G is $c \setminus \{e^{\lambda_i}\}$

9 $a \to b \to c$ is no induced $\bigcap_{i=1}^{\infty} \bigcap_{i=1}^{\infty} \bigcap_{i=1}^{\infty} f(G_i)$ of G;

9 G has no line $a \to i \times e$... there exists some $1 \in \mathcal{I}$ such that $|I \cap \{a, b\}| = 1;$

■ every arrow $a \rightarrow b \in G$ is strongly *I*-protected.

Reproduces a result of Andersson et al. (1997) for the observational case $\mathcal{I} = {\emptyset}.$

つひひ

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- Interventional data improves identifiability

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- **•** Interventional data improves identifiability
- \bullet Graph theoretic criterion for interventional Markov equivalence of two DAGs
- Interventional essential graphs: representation of I -Markov equivalence classes for visualization and algorithmic handling

Interventional Markov equivalence: summary

- Causal models not fully identifiable from observational data
- **•** Interventional data improves identifiability
- Graph theoretic criterion for interventional Markov equivalence of two \bullet DAGs
- Interventional essential graphs: representation of I -Markov equivalence classes for visualization and algorithmic handling

• Next part: learning $\mathcal I$ -equivalence classes from data

Gaussian causal model

- Gaussian causal model: $X \sim \mathcal{N}(0, \Sigma)$; density has Markov property of some DAG D
- Markov property translates to a set of linear structural equations:

$$
X_k = \sum_{k=1}^p \beta_{kj} X_j + \varepsilon_k, \quad \varepsilon_k \stackrel{\text{indep.}}{\sim} \mathcal{N}(0, \sigma_k^2), \quad 1 \leq k \leq p
$$

with $\beta_{ki} = 0$ if there is no arrow from j to k in the DAG D.

Gaussian causal model

- Gaussian causal model: $X \sim \mathcal{N}(0, \Sigma)$; density has Markov property of some DAG D
- Markov property translates to a set of linear structural equations:

$$
X_k = \sum_{k=1}^p \beta_{kj} X_j + \varepsilon_k, \quad \varepsilon_k \stackrel{\text{indep.}}{\sim} \mathcal{N}(0, \sigma_k^2), \quad 1 \leq k \leq p
$$

with $\beta_{ki} = 0$ if there is no arrow from j to k in the DAG D.

• Family of models parameterized by the "edge weights" $B := (\beta_{kj})_k^p$ $\frac{\rho}{k,j=1}$ and the error variances $\sigma^2 := (\sigma_1^2, \ldots, \sigma_p^2).$

Likelihood for given DAG

- Calculation of maximum likelihood estimator (MLE) for edge weights \hat{B} and error variances $\hat{\sigma^2}$ for jointly observational and interventional data: decouples into optimization over single structural equations
- $(\hat\beta_{kj})^p_{i}$ $\frac{P}{P}$ _{j $=$ 1}, $\hat{\sigma}_k^2$: given by least-squares regression of $X_k \sim X_{\mathsf{pa}(k)}$ (measurements of one variable vs. its "parents"), ignoring samples produced by intervention at X_k (Hauser and Bühlmann, 2013)

つひひ

Likelihood for given DAG

- Calculation of maximum likelihood estimator (MLE) for edge weights \hat{B} and error variances $\hat{\sigma^2}$ for jointly observational and interventional data: decouples into optimization over single structural equations
- $(\hat\beta_{kj})^p_{i}$ $\frac{P}{P}$ _{j $=$ 1}, $\hat{\sigma}_k^2$: given by least-squares regression of $X_k \sim X_{\mathsf{pa}(k)}$ (measurements of one variable vs. its "parents"), ignoring samples produced by intervention at X_k (Hauser and Bühlmann, 2013) \rightarrow parameter estimation: analytical calculation of MLE \rightsquigarrow model selection: efficient calculation of Bayesian information criterion (BIC)

つへへ

 \bullet For fix p, optimization of the BIC leads to consistent model selection in the limit $n \to \infty$ (Hauser and Bühlmann, 2013)

- \bullet For fix p , optimization of the BIC leads to consistent model selection in the limit $n \to \infty$ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)

- \bullet For fix p , optimization of the BIC leads to consistent model selection in the limit $n \to \infty$ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)
- Replacing ℓ_0 by ℓ_1 regularization does not help; reason: DAG constraint (non-convex constraint!)

つひひ

- \bullet For fix p , optimization of the BIC leads to consistent model selection in the limit $n \to \infty$ (Hauser and Bühlmann, 2013)
- Problem: model selection by optimizing BIC is computationally intrinsically hard (NP-hard; Chickering, 1996)
- Replacing ℓ_0 by ℓ_1 regularization does not help; reason: DAG constraint (non-convex constraint!)
- Solution: causal inference via greedy algorithm on space of *I*-essential graphs \rightsquigarrow Greedy Interventional Equivalence Search (GIES): natural generalization of the Greedy Equivalence Search (GES) algorithm of Chickering (2002) to interventional data

 Ω

No. 4 This Co. 4 Th

- Main idea of GIES: greedy optimization of BIC by traversing space of I -essential graphs
- Small steps: proceed from one $\mathcal I$ -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

- Main idea of GIES: greedy optimization of BIC by traversing space of I -essential graphs
- Small steps: proceed from one I -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- Main idea of GIES: greedy optimization of BIC by traversing space of I -essential graphs
- Small steps: proceed from one I -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- Main idea of GIES: greedy optimization of BIC by traversing space of I -essential graphs
- Small steps: proceed from one $\mathcal I$ -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

- Main idea of GIES: greedy optimization of BIC by traversing space of I -essential graphs
- Small steps: proceed from one $\mathcal I$ -essential graph to a neighbor
- Search directions: forward (adding edges), backward (removing edges), turning (reversing edges)

Possible forward step:

Neglecting (interventional) Markov equivalence narrows search space

Neglecting (interventional) Markov equivalence narrows search space

 \blacksquare

Neglecting (interventional) Markov equivalence narrows search space

 \leftarrow

Neglecting (interventional) Markov equivalence narrows search space

 \blacksquare

Neglecting (interventional) Markov equivalence narrows search space

DREAM4 in silico network challenge

- Goal: learn structure of gene regulatory network, predict intervention effects
- Data: realistic in silico steady-state and time series data, observational and interventional data points
- Our proceeding: cross-validation of gene expression levels under interventions.
- Compare CV-values to those of algorithms ignoring interventional nature of data

DREAM4 challenge: results

Conclusions:

- slight advantage over competing methods
- **e** estimation sensitive to model misspecification: acyclicity and normality assumptions violated

Simulation study: structure learning

Structural Hamming distance between true DAG and estimated interventional essential graph ($n = 1000$, $p = 20$). Structural Hamming distance (SHD): number of edges to be added, removed, or reversed to get from one graph to [a d](#page-52-0)i[ffe](#page-54-0)[r](#page-52-0)[en](#page-53-0)[t](#page-54-0) [o](#page-32-0)[n](#page-33-0)[e](#page-57-0)[.](#page-58-0)

Alain Hauser (University of Bern) [Causal inference from interventions](#page-0-0) **Angers 2013** 24 / 29

Simulation study: structure learning

SHD between estimated and true interventional essential graphs ($p = 20$). Upper part: observational data; lower part: $k = 12$ intervention targets of size 4. Ω

Alain Hauser (University of Bern) [Causal inference from interventions](#page-0-0) **Angers 2013** 25 / 29

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG; p independent regression problems
- Consistent model selection (structure learning) through maximization of BIC

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG; p independent regression problems
- Consistent model selection (structure learning) through maximization of BIC
- Structure learning computationally feasible with greedy algorithm

つひひ

Learning causal models: summary

- Gaussian causal models: analytical calculation of MLE for given DAG; p independent regression problems
- Consistent model selection (structure learning) through maximization of BIC
- **•** Structure learning computationally feasible with greedy algorithm
- Greedy algorithm keeps up with dynamic programming solution at much lower computational cost
- Neglection of interventional Markov equivalence leads to worse structure learning

Estimators suitable for high-dimensional data

э

 \blacksquare

 QQ

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
	- \triangleright nonlinear dependence of a variable from its causal parents
	- \triangleright cyclic models
	- \blacktriangleright time series data

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
	- \triangleright nonlinear dependence of a variable from its causal parents
	- \triangleright cyclic models
	- \blacktriangleright time series data
- Accounting for hidden variables, confounders, etc.

- Estimators suitable for high-dimensional data
- More complex (and hence realistic) models:
	- \triangleright nonlinear dependence of a variable from its causal parents
	- \triangleright cyclic models
	- \blacktriangleright time series data
- Accounting for hidden variables, confounders, etc.

Merci pour votre attention !

References I

- S.A. Andersson, D. Madigan, and M.D. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. Ann. Stat., 25(2):505–541, 1997.
- D.M. Chickering. Learning Bayesian networks is NP-complete. Learning from data: Artificial intelligence and statistics V, 112:121–130, 1996.
- D.M. Chickering. Optimal structure identification with greedy search. JMLR, 3(3): 507–554, 2002.
- A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. JMLR, 13:2409–2464, 2012.
- A. Hauser and P. Bühlmann. Jointly interventional and observational data: estimation of corresponding Markov equivalence classes of directed acyclic graphs. Submitted, 2013.
- T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A. Bennett, E. Coffey, H. Dai, Y.D. He, M.J. Kidd, A.M. King, M.R. Meyer, D. Slade, P.Y. Lum, S.B. Stepaniants, D.D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S.H. Friend. Functional Discovery via a Compendium of Expression Profiles. Cell, 102(1):109–126, 2000. ISSN 0092-8674.
- M.H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann. Predicting causal effects in large-scale systems from observational data. Nature Methods, 7(4):247–248, 2010.

÷.

 299

KOR KOR KERK

References II

T. Verma and J. Pearl. On the equivalence of causal models. In UAI 1990, pages 220–227, 1990.

э

 \mathbf{p} ÷

D-1 \prec э. -4

4 D F